From Strong to Woodin cardinals. A level-by-level analysis of the Weak Vopěnka Principle

Joan Bagaria

CUNY Set Theory Seminar (Online) 1 May 2020

Vopěnka's Principle

Definition (P. Vopěnka 1960's)

 $\textit{Vopěnka's Principle}\ (VP)$ asserts that there is no rigid proper class of graphs.

Some equivalent forms of VP:

- (Solovay-Reinhardt-Kanamori) For every proper class of structures of the same type there exist distinct A and B in the class and an (elementary) embedding of A into B.
- (Adámek-Rosičký) Ord cannot be fully embedded into Gra. i.e., there is no sequence $\langle G_{\alpha} : \alpha \in ORD \rangle$ of graphs such that for every $\alpha \leqslant \beta$ there exists exactly one homomorphism $G_{\alpha} \rightarrow G_{\beta}$, and no homomorphism $G_{\beta} \rightarrow G_{\alpha}$ whenever $\alpha < \beta$.

The Weak Vopěnka's Principle (WVP)

Definition (Adámek-Rosický-Trnková 1988¹)

The Weak Vopěnka's Principle asserts that ${\rm Ord}^{{\rm op}}$ cannot be fully embedded into ${\rm Gra}.$

I. e., there is no sequence $\langle G_\alpha:\alpha\in \mathsf{ORD}\rangle$ of graphs such that for every $\alpha\leqslant\beta$ there exists exactly one homomorphism $G_\beta\to G_\alpha$, and no homomorphism $G_\alpha\to G_\beta$ whenever $\alpha<\beta.$

The motivation for this principle was the following:

- VP holds iff every full subcategory of a locally presentable category closed under colimits is coreflective.
- WVP holds iff every full subcategory of a locally presentable category closed under limits is reflective.

¹J. Adámek, J. Rosický, and V. Trnková. *Are all limit-closed subcategories of locally presentable categories reflective?* In Categorical algebra and its applications (Louvain-La-Neuve, 1987), volume 1348 of Lecture Notes in Math., pages 1-18. Springer, Berlin, 1988.

VP vs. WVP

Proposition

VP implies WVP.

Using a result of R. Isbell (1960), which shows that Ord^{op} is bounded iff there is no proper class of measurable cardinals, Adámek-Rosický (1994) show that WVP implies a proper class of measurable cardinals.

Question (Adámek-Rosický 1988)

Does WVP *imply* VP?

Wilson's Theorem

Theorem (T. Wilson 2019)

The following are equivalent:

- 1. WVP
- 2. ORD is Woodin.

"ORD is Woodin" means: For every proper class A there is some cardinal κ such that for every λ there exists a non-trivial elementary embedding $j:V \to M$, with M transitive, $\mathsf{crit}(j) = \kappa, \ V_\lambda \subseteq M$, and $A \cap V_\lambda = j(A) \cap V_\lambda$.

This shows that WVP does not imply VP, because VP is known to imply the the existence of large cardinals much stronger (consistency-wise) than "ORD is Woodin".

The WVP for definable classes

Definition

Let n>0. The Σ_n -Weak Vopěnka Principle $(\Sigma_n\text{-WVP})$ asserts that there exists no $\Sigma_n\text{-definable sequence }\langle G_\alpha:\alpha\in\text{ORD}\rangle$ of graphs such that for every $\alpha\leqslant\beta$ there exists exactly one homomorphism $G_\beta\to G_\alpha$, and no homomorphism $G_\alpha\to G_\beta$ whenever $\alpha<\beta.$

 Π_n -WVP is defined similarly.

Strong cardinals

Recall that a cardinal κ is strong if for every ordinal λ there exists an elementary embedding $j: V \to M$, with M transitive, crit $j = \kappa$, and $V_{\lambda} \subseteq M$.

If κ is strong, then $\kappa \in C^{(2)}$, i.e., $V_{\kappa} \preceq_{\Sigma_2} V$.

More generally, we define:

Definition

A cardinal κ is Σ_n -strong if for every Σ_n -definable (with parameters in V_κ) class A, for every ordinal λ there exists an elementary embedding $j:V \to M$, with M transitive, $crit(j) = \kappa$, $V_\lambda \subseteq M$, and $A \cap V_\lambda \subseteq j(A)$.

Every strong cardinal is Σ_2 -strong. Also, if $\lambda\in C^{(n+1)}$, then a cardinal is λ - Π_n -strong iff it is λ - Σ_{n+1} -strong. So, Π_n -strong $\equiv \Sigma_{n+1}$ -strong.

Main Theorem

Theorem (BW²)

The following are equivalent for $n \ge 2$: 1. Σ_n -WVP

2. There exists a Σ_n -strong cardinal.

In particular, Σ_2 -WVP holds iff there exists a strong cardinal.

²Bagaria, J. and Wilson, T. *The Weak Vopěnka Principle for definable classes of structures.* Preprint.

The Γ -PRP principle

The first step in the proof of the Theorem is a reformulation of WVP in terms of a Product Reflection Principle:

Definition (BW)

For Γ a definability class (i.e., one of Σ_n , Π_n , some n>0), the Product Reflection Principle $\Gamma\text{-}\mathsf{PRP}$ asserts that for every $\Gamma\text{-}\mathsf{definable}$ proper class $\mathbb C$ of relational structures of the same type there exists a cardinal κ that product-reflects $\mathbb C$, i.e.,

For every X in \mathfrak{C} there is a homomorphism $\prod(\mathfrak{C}\cap V_{\kappa}) \to X$.

The equivalence of Γ -PRP and Γ -WVP

Theorem (BW)

 Γ -PRP and Γ -WVP are equivalent, for every definability class Γ .

The proof first shows that Γ -PRP is equivalent to Γ -SWVP (where SWVP is the *Semi-Weak Vopěnka Principle*, which is the same as WVP but we don't require uniqueness of the downward arrows). Clearly Γ -SWVP implies Γ -WVP.

Then it shows that Γ -WVP implies Γ -SWVP, and therefore they are equivalent.

Main Theorem (full version)

Theorem (BW)

The following are equivalent for $n \ge 2$:

- 1. There exists a Σ_n -strong cardinal.
- 2. There exists a Π_{n-1} -strong cardinal.
- 3. Σ_n -PRP
- 4. Π_{n-1} -PRP
- 5. Σ_n -WVP
- 6. Π_{n-1} -WVP
- 7. Σ_n -SWVP
- 8. Π_{n-1} -SWVP

There are only two remaining non-trivial implications. Namely,

- (1)⇒(3): If there exists a Σ_n-strong cardinal, then Σ_n-PRP holds.
- (4) \Rightarrow (2): Π_{n-1} -PRP implies the existence of a Π_{n-1} -strong cardinal.

Proof of $(1) \Rightarrow (3)$:

Let κ be Σ_n -strong and let \mathcal{C} be definable, by a Σ_n formula with parameters in V_{κ} , proper class of structures in a fixed relational language.

Given any $\mathcal{A} \in \mathfrak{C}$, let $\lambda \geqslant \kappa$ be such that $\mathcal{A} \in V_{\lambda}$.

Let $j: V \to M$ be an elementary embedding, with $crit(j) = \kappa$, $V_{\lambda} \subseteq M$, $j(\kappa) > \lambda$, and $\mathcal{C} \cap V_{\lambda} \subseteq j(\mathcal{C})$.

By elementarity, the restriction of j to ${\mathfrak C}\cap V_{\kappa}$ yields a homomorphism

$$\mathfrak{h}: \prod (\mathfrak{C} \cap V_{\kappa}) \to \prod (\mathfrak{j}(\mathfrak{C}) \cap V_{\mathfrak{j}(\kappa)}^{M}).$$

Since $\mathcal{A} \in \mathcal{C} \cap V_{\lambda}$, we have that $\mathcal{A} \in j(\mathcal{C})$. Moreover $\mathcal{A} \in V_{\lambda} \subseteq V_{j(\kappa)}^{\mathcal{M}}$. Thus, letting

$$g: \prod(\mathfrak{j}(\mathfrak{C}) \cap V^{\mathcal{M}}_{\mathfrak{j}(\kappa)}) \to \mathcal{A}$$

be the projection map, we have that

$$g \circ h : \prod (\mathcal{C} \cap V_{\kappa}) \to \mathcal{A}$$

is a homomorphism, as wanted. \Box

The hard implication is:

► (4)⇒(2): Π_{n-1}-PRP implies the existence of a Π_{n-1}-strong cardinal.

Idea of the Proof (for the basic case n = 2):

A cardinal μ is λ -strong if and only if $V_{\lambda+1} \models$ " μ is λ -strong", since the λ -strongness of μ is witnessed by a strong (μ , λ)-extender which, if it exists, belongs to $V_{\lambda+1}$. Let \mathcal{A} be the class of all structures

$$\mathcal{A}_{lpha} \coloneqq \langle V_{\lambda_{lpha}+1}, \in$$
, $lpha$, μ_{lpha} , λ_{lpha} , $\{R_{\phi}^{lpha}\}_{\phi \in \Pi_1}
angle$

where μ_{α} is the α -th element of $C^{(1)}$, λ_{α} is the least cardinal in $C^{(1)}$ greater than μ_{α} such that no cardinal $\leqslant \mu_{\alpha}$ is λ_{α} -strong, and $\{R^{\alpha}_{\phi}\}_{\phi\in\Pi_1}$ is the Π_1 relational diagram for $V_{\lambda_{\alpha}+1}$, i.e., if $\phi(x_1,\ldots,x_n)$ is a Π_1 formula in the language of $\langle V_{\lambda_{\alpha}+1},\in,\alpha,\mu_{\alpha},\lambda_{\alpha}\rangle$, then

$$R^{\alpha}_{\phi} = \{ \langle x_1, \dots, x_n \rangle : \langle V_{\lambda_{\alpha}+1}, \in, \alpha, \mu_{\alpha}, \lambda_{\alpha} \rangle \models \text{``}\phi(x_1, \dots, x_n) \text{''} \}.$$

- $\begin{array}{l} \mathcal{A} \text{ is } \Pi_1\text{-definable without parameters. For } X \in \mathcal{A} \text{ if and only if} \\ X = \langle X_0, X_1, X_2, X_3, X_4, X_5 \rangle, \text{ where} \end{array}$
- (1) X_2 is an ordinal
- (2) X_3, X_4 belong to $C^{(1)}$
- (3) $X_0 = V_{X_4+1}$
- $(4) X_1 = \in \upharpoonright X_0$
- (5) X_5 is the Π_1 relational diagram of $\langle X_0, X_1, X_2, X_3, X_4 \rangle$, and
- (6) the following hold in $\langle X_0, X_1, X_2, X_3, X_4 \rangle$:
 - 0.1 V_{X_4} satisfies that X_3 is the X_2 -th element of $C^{(1)}$
 - 0.2 $\forall \kappa \leq X_3(\kappa \text{ is not } X_4\text{-strong})$
 - $0.3 \ \, \forall \mu (\mu \in C^{(1)} \land \ \, X_3 < \mu < X_4 \rightarrow \exists \kappa \leqslant X_3 (\kappa \text{ is } \mu \text{-strong})).$

If there is no strong cardinal, then $\ensuremath{\mathcal{A}}$ is a proper class.

By $\Pi_1\text{-}\mathsf{PRP}$ there exists a cardinal $\kappa\in C^{(2)}$ such that for every ordinal β there is a homomorphism

 $\mathfrak{j}_\beta:\prod(\mathfrak{C}\cap V_\kappa)\to\mathcal{A}_\beta$

Notice that, since $\kappa \in C^{(2)}$,

$$\prod (\mathfrak{C} \cap V_{\kappa}) = \langle \prod_{\alpha < \kappa} V_{\lambda_{\alpha} + 1}, \overline{\in}, \langle \alpha \rangle_{\alpha < \kappa}, \langle \mu_{\alpha} \rangle_{\alpha < \kappa}, \langle \lambda_{\alpha} \rangle_{\alpha < \kappa}, \{ \overline{R}_{\phi}^{\alpha} \}_{\phi \in \Pi_{1}} \rangle$$

where $\overline{\in}$ is the pointwise membership relation, and $\overline{R}^{\alpha}_{\phi}$ is the pointwise R^{α}_{ϕ} relation.

Now fix some β greater than λ_{κ} of uncountable cofinality and such that $\mu_{\beta} = \beta$, and let $j = j_{\beta}$.

Define $k:V_{\kappa+1}\to V_{\beta+1}$ by $k(X)=j(\langle X\cap V_{\mu_\alpha}\rangle_{\alpha<\kappa})\,.$

Claim

1. k preserves the Boolean operations, as well as the \subseteq relation.

2. k maps ordinals to ordinals, and is the identity on $\omega + 1$.

Note that $k(\kappa) = j(\langle \mu_{\alpha} \rangle_{\alpha < \kappa}) = \mu_{\beta} = \beta$.

For each $a \in [\beta]^{<\omega}$, define E_a by

$$X \in E_{\mathfrak{a}}$$
 iff $X \subseteq [\kappa]^{|\mathfrak{a}|}$ and $\mathfrak{a} \in k(X)$.

Since $k(\kappa) = \beta$ and $k(|\alpha|) = |\alpha|$, we also have $k([\kappa]^{|\alpha|}) = [\beta]^{|\alpha|}$, hence $[\kappa]^{|\alpha|} \in E_{\alpha}$. Moreover, since k preserves Boolean operations and the \subseteq relation, E_{α} is an ultrafilter over $[\kappa]^{|\alpha|}$. Furthermore, since $k(\omega) = \omega$, E_{α} is ω_1 -complete.

Hence, the ultrapower $\mathsf{Ult}(V,\mathsf{E}_{\mathfrak{a}})$ is well-founded. Let

 $j_a: V \to M_a \cong Ult(V, E_a)$

be the corresponding ultrapower embedding.

Claim

 $\mathcal{E} = \{ E_{\alpha} : \alpha \in [\beta]^{<\omega} \}$ is normal and coherent.

Let $M_{\mathcal{E}}$ be the direct limit of

$$\langle \langle \mathsf{M}_{\mathfrak{a}} : \mathfrak{a} \in [\beta]^{<\omega} \rangle$$
, $\langle \mathfrak{i}_{\mathfrak{a}\mathfrak{b}} : \mathfrak{a} \subseteq \mathfrak{b} \rangle \rangle$

where the $i_{ab}:M_a\to M_b$ are the usual commuting maps.

Let $j_{\mathcal{E}}:V\to M_{\mathcal{E}}$ be the corresponding limit elementary embedding.

Using the normality of $\mathcal E,$ and the fact that β has uncountable cofinality, we can show:

Claim

 $M_{\mathcal{E}}$ is closed under ω -sequences, hence it is well-founded.

Let $\pi: M_{\mathcal{E}} \to N$ be the transitive collape.

 $\begin{array}{l} \mathsf{Claim} \\ V_\beta \subseteq \mathsf{N} \end{array}$

Let $j_N : V \to N$ be the composition map $j_N = \pi \circ j_{\mathcal{E}}$.

 $\begin{array}{l} \text{Claim} \\ j_N(\kappa) \geqslant \beta. \end{array}$

Since $\beta > \kappa$, this implies that the critical point of j_N is less than or equal to κ . Thus, since $V_\beta \subseteq N$, j_N witnesses that the critical point of j_N is a β -strong cardinal. But this contradicts our choice of λ_{κ} . \Box

For the general case (i.e., $n \geqslant 2)$ we work with the $\Pi_{n-1}\text{-definable}$ class of structures

$$\mathcal{A}_{\alpha} := \langle V_{\lambda'_{\alpha}}, \in, \alpha, \mu_{\alpha}, \lambda_{\alpha}, \lambda'_{\alpha}, C^{(n-1)} \cap \mu_{\alpha}, \{R^{\alpha}_{\phi}\}_{\phi \in \Pi_{1}} \rangle$$

 α an ordinal, where μ_{α} is the α -th element of $C^{(n-1)}$, λ_{α} is the least cardinal in $C^{(n-1)}$ greater than μ_{α} such that no cardinal $\leqslant \mu_{\alpha}$ is λ_{α} - Π_{n-1} -strong, λ'_{α} is the least ordinal in $C^{(n-1)}$ greater than λ_{α} , and $\{R^{\alpha}_{\wp}\}_{\varphi\in\Pi_{1}}$ is the Π_{1} relational diagram for $V_{\lambda'_{\alpha}}$.

The proof is as before, but one still needs to show that $A \cap V_{\beta} \subseteq j_N(A)$ to conclude that $crit(j_N)$ is $\beta - \prod_{n-1}$ -strong.

For this, we use the following:

Proposition

Suppose that $n \ge 2$ and β is a limit point of $C^{(n-1)}$. Then the following are equivalent for any cardinal $\kappa < \beta$:

- 1. κ is β - Π_{n-1} -strong, i.e., for every Π_{n-1} -definable class A there is an elementary embedding $j : V \to M$, with M transitive, $crit(j) = \kappa$, $V_{\beta} \subseteq M$, and $A \cap V_{\beta} \subseteq j(A)$.
- 2. There is an elementary embedding $j : V \to M$, with M transitive, $crit(j) = \kappa$, $V_{\beta} \subseteq M$, and $M \models "\beta \in C^{(n-1)"}$.

The proof is then completed by showing:

 $\begin{array}{l} \text{Claim} \\ N\models``\beta\in C^{(n-1)"} \end{array}$

for then j_N witnesses that its critical point is a $\beta-\Pi_{n-1}\text{-strong}$ cardinal, in contradiction to our choice of $\lambda_{\kappa}.$ \Box

Product Structural Reflection

Recall:

SR: For every (definable) class of relational structures Cof the same type there exists α such that α reflects C, i.e., for every A in C there exists B in $C \cap V_{\alpha}$ and an (elementary) embedding from B into A.

Now define:

PSR: For every (definable) class of relational structures Cof the same type there exists α such that α product-reflects C, i.e., for every A in C there exists a set S with $A \in S$ and

an (elementary) embedding from $\prod (\mathcal{C} \cap V_{\alpha}) \rightarrow \prod S$.

PSR: From Strong to Woodin cardinals

Complexity	SR	PSR
Σ ₁	ZFC	ZFC
Π ₁ , Σ ₂	Supercompact	Strong
Π2, Σ3	Extendible	Π_2 -Strong
Π ₃ , Σ ₄	C ⁽²⁾ -Extendible	Π_3 -Strong
	:	:
$Π_n$, Σ _{n+1}	$C^{(n-1)}$ -Extendible	Π_n -Strong
•	:	:
Π_n , all n	VP	ORD is Woodin