I-small submodels of countable models of arithmetic

Saeideh Bahrami
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

CUNY Graduate Center, NY
MOPA Seminars, 21 November 2023

1970s

Set Theory vs Arithmetic

Set Theory
Cardinal
Regular cardinal
Weakly compact cardinal

Arithmetic
Cut
Semiregular cut
Strong cut

1970s

Set Theory vs Arithmetic

Set Theory
Cardinal
Regular cardinal
Weakly compact cardinal

Arithmetic
Cut
Semiregular cut
Strong cut

- Independence results

I-small sets

- Let $\mathcal{M}:=(M ; 0,1,+, .,<)$ be a model of $I \Sigma_{1}$ (i.e. the fragment of PA in which induction scheme is restricted to Σ_{1}-formulas).

I-small sets

- Let $\mathcal{M}:=(M ; 0,1,+, .,<)$ be a model of $I \Sigma_{1}$ (i.e. the fragment of PA in which induction scheme is restricted to Σ_{1}-formulas).
- Let I be a cut of \mathcal{M}; i.e. an initial segment with no maximum element.

I-small sets

- Let $\mathcal{M}:=(M ; 0,1,+, .,<)$ be a model of $I \Sigma_{1}$ (i.e. the fragment of PA in which induction scheme is restricted to Σ_{1}-formulas).
- Let I be a cut of \mathcal{M}; i.e. an initial segment with no maximum element.
- A subset X of M is I-small if there exists some function $f \in M$ such that $f \upharpoonright$, is a bijection from I onto X.

I-small sets

- Let $\mathcal{M}:=(M ; 0,1,+, .,<)$ be a model of $I \Sigma_{1}$ (i.e. the fragment of PA in which induction scheme is restricted to Σ_{1}-formulas).
- Let I be a cut of \mathcal{M}; i.e. an initial segment with no maximum element.
- A subset X of M is I-small if there exists some function $f \in M$ such that f \upharpoonright is a bijection from I onto X. Equivalently, X is I-small iff there exists some $a \in M$ such that:
(1) $X=\left\{(a)_{i}: i \in I\right\}$, and
(2) $(a)_{i} \neq(a)_{j}$ for all distinct $i, j \in I$.

I-small sets

- Let $\mathcal{M}:=(M ; 0,1,+, .,<)$ be a model of $I \Sigma_{1}$ (i.e. the fragment of PA in which induction scheme is restricted to Σ_{1}-formulas).
- Let I be a cut of \mathcal{M}; i.e. an initial segment with no maximum element.
- A subset X of M is I-small if there exists some function $f \in M$ such that f \upharpoonright is a bijection from I onto X. Equivalently, X is I-small iff there exists some $a \in M$ such that:
(1) $X=\left\{(a)_{i}: i \in I\right\}$, and
(2) $(a)_{i} \neq(a)_{j}$ for all distinct $i, j \in I$.
- If $I=\mathbb{N}$, then we simply use small instead of \mathbb{N}-small.

I-small sets

- Let $\mathcal{M}:=(M ; 0,1,+, .,<)$ be a model of $I \Sigma_{1}$ (i.e. the fragment of PA in which induction scheme is restricted to Σ_{1}-formulas).
- Let I be a cut of \mathcal{M}; i.e. an initial segment with no maximum element.
- A subset X of M is I-small if there exists some function $f \in M$ such that f \upharpoonright is a bijection from I onto X. Equivalently, X is I-small iff there exists some $a \in M$ such that:

$$
\text { (1) } X=\left\{(a)_{i}: i \in I\right\} \text {, and }
$$

(2) $(a)_{i} \neq(a)_{j}$ for all distinct $i, j \in I$.

- If $I=\mathbb{N}$, then we simply use small instead of \mathbb{N}-small.
- First appearance: Lascar 1994, Small index property.

Outline of the talk

- Properties of I-small subsets of \mathcal{M}.
- Automorphism group of a countable recursively saturated model of PA and I-small submodels.
- Initial self-embeddings of countable models of $I \Sigma_{1}$ and I-small submodels.

Properties of I-small subsets of M

Which subsets of M are I-small?

- I is I-small in \mathcal{M}.

Which subsets of M are I-small?

- I is I-small in \mathcal{M}.
- If $M_{0}:=\left\{(a)_{i}: i \in I\right\}$ is an I-small submodel of \mathcal{M} such that I is a proper subset of M_{0}, then M_{0} is neither cofinal in \mathcal{M} (since a is an upper bound for $\left.\left\{(a)_{i}: i \in l\right\}\right)$,

Which subsets of M are I-small?

- I is I-small in \mathcal{M}.
- If $M_{0}:=\left\{(a)_{i}: i \in I\right\}$ is an I-small submodel of \mathcal{M} such that I is a proper subset of M_{0}, then M_{0} is neither cofinal in \mathcal{M} (since a is an upper bound for $\left.\left\{(a)_{i}: i \in l\right\}\right)$, nor is an initial segment of \mathcal{M} :

Which subsets of M are I-small?

- I is I-small in \mathcal{M}.
- If $M_{0}:=\left\{(a)_{i}: i \in I\right\}$ is an I-small submodel of \mathcal{M} such that I is a proper subset of M_{0}, then M_{0} is neither cofinal in \mathcal{M} (since a is an upper bound for $\left.\left\{(a)_{i}: i \in I\right\}\right)$, nor is an initial segment of \mathcal{M} :
- (Ackermann's membership relation). There exists a Δ_{0}-formula $x E y$ asserting that "the x-th bit of the binary expansion of y is 1 ". a_{E} denotes the set of E -members of a in \mathcal{M}.
- $\operatorname{SSy}_{\boldsymbol{I}}(\mathcal{M}):=\left\{X \cap I: X\right.$ is Σ_{1}-definable in $\left.\mathcal{M}\right\}=\left\{a_{E} \cap I: a \in M\right\}$.
- If $I \subset_{e} \mathcal{M} \subseteq_{e} \mathcal{N}$, then $\operatorname{SSy}_{\boldsymbol{l}}(\mathcal{M})=\operatorname{SSy}_{\boldsymbol{l}}(\mathcal{N})$.

Which subsets of M are I-small?

- I is I-small in \mathcal{M}.
- If $M_{0}:=\left\{(a)_{i}: i \in I\right\}$ is an I-small submodel of \mathcal{M} such that I is a proper subset of M_{0}, then M_{0} is neither cofinal in \mathcal{M} (since a is an upper bound for $\left.\left\{(a)_{i}: i \in I\right\}\right)$, nor is an initial segment of \mathcal{M} :
- (Ackermann's membership relation). There exists a Δ_{0}-formula $x E y$ asserting that "the x-th bit of the binary expansion of y is 1 ". a_{E} denotes the set of E -members of a in \mathcal{M}.
- $\operatorname{SSy}_{\boldsymbol{\prime}}(\mathcal{M}):=\left\{X \cap I: X\right.$ is Σ_{1}-definable in $\left.\mathcal{M}\right\}=\left\{a_{E} \cap I: a \in M\right\}$.
- If $I \subset_{e} \mathcal{M} \subseteq_{e} \mathcal{N}$, then $\operatorname{SSy}_{\boldsymbol{l}}(\mathcal{M})=\operatorname{SSy}_{\boldsymbol{l}}(\mathcal{N})$.
$A:=\left\{i \in I: \mathcal{M} \models \neg \operatorname{E}(a)_{i}\right\} \neq \emptyset$ is inside $\operatorname{SSy}_{\boldsymbol{\prime}}(\mathcal{M})$ but not in $\mathrm{SSy}_{\mathrm{I}}\left(\mathcal{M}_{0}\right)$.

Which subsets of M are I-small?

- I is I-small in \mathcal{M}.
- If $M_{0}:=\left\{(a)_{i}: i \in I\right\}$ is an I-small submodel of \mathcal{M} such that I is a proper subset of M_{0}, then M_{0} is neither cofinal in \mathcal{M} (since a is an upper bound for $\left.\left\{(a)_{i}: i \in l\right\}\right)$, nor is an initial segment of \mathcal{M} :
- (Ackermann's membership relation). There exists a Δ_{0}-formula x Ey asserting that "the x-th bit of the binary expansion of y is 1 ". a_{E} denotes the set of E -members of a in \mathcal{M}.
- $\operatorname{SSy}_{\boldsymbol{I}}(\mathcal{M}):=\left\{X \cap I: X\right.$ is Σ_{1}-definable in $\left.\mathcal{M}\right\}=\left\{a_{E} \cap I: a \in M\right\}$.
- If $I \subset_{e} \mathcal{M} \subseteq_{e} \mathcal{N}$, then $\operatorname{SSy}_{\boldsymbol{l}}(\mathcal{M})=\operatorname{SSy}_{\boldsymbol{l}}(\mathcal{N})$.
$A:=\left\{i \in I: \mathcal{M} \models \neg i \mathrm{E}(a)_{i}\right\} \neq \emptyset$ is inside $\operatorname{SSy}_{\boldsymbol{\prime}}(\mathcal{M})$ but not in $\mathrm{SSy}_{\boldsymbol{\prime}}\left(\mathcal{M}_{0}\right)$.
- By Compactness Theorem, there exists some elementary extension \mathcal{N} of \mathcal{M} in which \mathcal{M} is small.

Which subsets of M are I-small?

Notation:

- Let $\left\langle\delta_{r}: r \in M\right\rangle$ be a canonical enumeration of all Δ_{0}-formulas within \mathcal{M}.
- The predicate $\operatorname{Sat}_{\Delta_{0}}(x)$ is the truth predicate for Δ_{0}-formulas in \mathcal{M}, which is Δ_{1}-definable in \mathcal{M}.
- For every $r \in M, f_{r}(\bar{x})=y$ denotes the following partial Σ_{1}-function in \mathcal{M} :

$$
y:=\text { the least element such that } \exists z \operatorname{Sat}_{\Delta_{0}}\left(\delta_{r}(\bar{x}, y, z)\right)
$$

- The notation $\left[f_{r}(\bar{x}) \downarrow\right]$ denotes the Σ_{1}-formula $\exists z, y \operatorname{Sat}_{\Delta_{0}}\left(\delta_{r}(\bar{x}, y, z)\right.$), and $\left[f_{r}(\bar{x}) \downarrow\right]^{<w}$ stands for the formula $\exists z, y<w \operatorname{Sat}_{\Delta_{0}}\left(\delta_{r}(\bar{x}, y, z)\right)$.
- Let \mathcal{F} be the collection of all \emptyset-definable partial Σ_{1}-functions in \mathcal{M}.

Which subsets of M are I-small?

- For every $c \in M$ the subset of Σ_{1}-definable elements of \mathcal{M} with c as parameter, denoted by $\mathrm{K}^{1}(\mathcal{M} ; c)$ is small in \mathcal{M} :

Which subsets of M are I-small?

- For every $c \in M$ the subset of Σ_{1}-definable elements of \mathcal{M} with c as parameter, denoted by $\mathrm{K}^{1}(\mathcal{M} ; c)$ is small in \mathcal{M} :

It is easy to see that: $\mathrm{K}^{1}(\mathcal{M} ; c)=\left\{f_{n}(c): n \in \mathbb{N}\right.$ and $\left.\mathcal{M} \models\left[f_{n}(c) \downarrow\right]\right\}$.

Which subsets of M are I-small?

- For every $c \in M$ the subset of Σ_{1}-definable elements of \mathcal{M} with c as parameter, denoted by $\mathrm{K}^{1}(\mathcal{M} ; \mathrm{c})$ is small in \mathcal{M} :

It is easy to see that:

$$
\mathrm{K}^{1}(\mathcal{M} ; c)=\left\{f_{n}(c): n \in \mathbb{N} \text { and } \mathcal{M} \models\left[f_{n}(c) \downarrow\right]\right\} \text {. Fix some }
$$

nonstandard $s \in M$, and let $a \in M$ such that:

$$
\mathcal{M} \models \forall r<s\binom{\left(\left[f_{r}(c) \downarrow\right] \rightarrow(a)_{r}=f_{r}(c)\right) \wedge}{\left(\neg\left[f_{r}(c) \downarrow\right] \rightarrow(a)_{r}=0\right)} .
$$

Which subsets of M are I-small?

- For every $c \in M$ the subset of Σ_{1}-definable elements of \mathcal{M} with c as parameter, denoted by $\mathrm{K}^{1}(\mathcal{M} ; c)$ is small in \mathcal{M} :

It is easy to see that:

$$
\mathrm{K}^{1}(\mathcal{M} ; c)=\left\{f_{n}(c): n \in \mathbb{N} \text { and } \mathcal{M} \models\left[f_{n}(c) \downarrow\right]\right\} \text {. Fix some }
$$

nonstandard $s \in M$, and let $a \in M$ such that:

$$
\mathcal{M} \models \forall r<s \quad\binom{\left(\left[f_{r}(c) \downarrow\right] \rightarrow(a)_{r}=f_{r}(c)\right) \wedge}{\left(\neg\left[f_{r}(c) \downarrow\right] \rightarrow(a)_{r}=0\right)}
$$

- $\mathrm{K}^{1}(\mathcal{M} ; I)$ is the subset of Σ_{1}-definable elements of \mathcal{M} with elements of I as parameter.

Which subsets of M are I-small?

Suppose I is a strong cut of \mathcal{M}; i.e. $I \longrightarrow(I)_{a}^{n}$ for all $n \in \omega$ and all $a \in I$.

Which subsets of M are I-small?

Suppose I is a strong cut of \mathcal{M}; i.e. $I \longrightarrow(I)_{a}^{n}$ for all $n \in \omega$ and all $a \in I$. Equivalently, I is strong iff for every function $f \in M$ whose domain contains I, there exists some $e \in M$ such that $f(i) \in I \Leftrightarrow f(i)<e$ for all $i \in I$.

Which subsets of M are I-small?

Suppose I is a strong cut of \mathcal{M}; i.e. $I \longrightarrow(I)_{a}^{n}$ for all $n \in \omega$ and all $a \in I$. Equivalently, I is strong iff for every function $f \in M$ whose domain contains I, there exists some $e \in M$ such that $f(i) \in I \Leftrightarrow f(i)<e$ for all $i \in I$.
(1) $\mathrm{K}^{1}(\mathcal{M} ; I)$ is I-small.

Which subsets of M are I-small?

Suppose I is a strong cut of \mathcal{M}; i.e. $I \longrightarrow(I)_{a}^{n}$ for all $n \in \omega$ and all $a \in I$. Equivalently, I is strong iff for every function $f \in M$ whose domain contains I, there exists some $e \in M$ such that $f(i) \in I \Leftrightarrow f(i)<e$ for all $i \in I$.
(1) $\mathrm{K}^{1}(\mathcal{M} ; I)$ is I-small.

Similar to the previous proof, we find some $a \in M$ such that $\mathrm{K}^{1}(\mathcal{M} ; I)=\left\{(a)_{i}: \quad i \in I\right\}$. In order to make the function $(a)_{i}$ an injection, we inductively define the Δ_{0}-function g in \mathcal{M} such that:

$$
g(0):=(a)_{0}, \text { and }
$$

$g(x+1):=(a)_{r}$ s.t. r is the least element for which $(a)_{r}$ is not between elements of $\{g(z): z \leq x\}$.

Which subsets of M are I-small?

Suppose I is a strong cut of \mathcal{M}; i.e. $I \longrightarrow(I)_{a}^{n}$ for all $n \in \omega$ and all $a \in I$. Equivalently, I is strong iff for every function $f \in M$ whose domain contains I, there exists some $e \in M$ such that $f(i) \in I \Leftrightarrow f(i)<e$ for all $i \in I$.
(1) $\mathrm{K}^{1}(\mathcal{M} ; I)$ is I-small.

Similar to the previous proof, we find some $a \in M$ such that $\mathrm{K}^{1}(\mathcal{M} ; I)=\left\{(a)_{i}: \quad i \in I\right\}$. In order to make the function $(a)_{i}$ an injection, we inductively define the Δ_{0}-function g in \mathcal{M} such that:

$$
g(0):=(a)_{0}, \text { and }
$$

$g(x+1):=(a)_{r}$ s.t. r is the least element for which $(a)_{r}$ is not between elements of $\{g(z): z \leq x\}$. Then let $h(x):=\mu_{r}\left((a)_{r}=g(x)\right)$. Since l is strong there exists some $e \in M$ s.t. $h(i) \in I$ iff $h(i)<e$ for all $i \in I$.

Which subsets of M are I-small?

Which subsets of M are I-small?

So $M_{0}=\left\{g(i): i<i_{0}\right\}$, which is a contradiction. As a result, g li, is a bijection from I onto $\mathrm{K}^{1}(\mathcal{M} ; /)$.

Which subsets of M are I-small?

(2) If \mathcal{M} is a countable recursively saturated model of PA, then: 2-1) (Kossak-Schmerl (1995)). There exists some small recursively saturated elementary submodel \mathcal{M}_{0} of \mathcal{M} which has $2^{N_{0}}$ elementary submodels.

Which subsets of M are I-small?

(2) If \mathcal{M} is a countable recursively saturated model of PA , then: 2-1) (Kossak-Schmerl (1995)). There exists some small recursively saturated elementary submodel \mathcal{M}_{0} of \mathcal{M} which has $2^{N_{0}}$ elementary submodels.
2-2) There exists some recursively saturated I-small elementary submodel \mathcal{M}_{0} of \mathcal{M}. In particular, \mathcal{M}_{0} is not of the form of $\mathrm{K}(\mathcal{M} ; 1)$.

Which subsets of M are I-small?

(2) If \mathcal{M} is a countable recursively saturated model of PA , then: 2-1) (Kossak-Schmerl (1995)). There exists some small recursively saturated elementary submodel \mathcal{M}_{0} of \mathcal{M} which has $2^{N_{0}}$ elementary submodels.
2-2) There exists some recursively saturated I-small elementary submodel \mathcal{M}_{0} of \mathcal{M}. In particular, \mathcal{M}_{0} is not of the form of $\mathrm{K}(\mathcal{M} ; 1)$.

Let S be a satisfaction class for \mathcal{M} such that $\mathcal{M}^{*}:=(\mathcal{M} ; S)$ is also recursively saturate. Then put $\mathcal{M}_{0}:=\mathrm{K}\left(\mathcal{M}^{*}\right)$

Which subsets of M are I-small?

(2) If \mathcal{M} is a countable recursively saturated model of PA , then: 2-1) (Kossak-Schmerl (1995)). There exists some small recursively saturated elementary submodel \mathcal{M}_{0} of \mathcal{M} which has $2^{N_{0}}$ elementary submodels.
2-2) There exists some recursively saturated I-small elementary submodel \mathcal{M}_{0} of \mathcal{M}. In particular, \mathcal{M}_{0} is not of the form of $\mathrm{K}(\mathcal{M} ; 1)$.

Let S be a satisfaction class for \mathcal{M} such that $\mathcal{M}^{*}:=(\mathcal{M} ; S)$ is also recursively saturate. Then put $\mathcal{M}_{0}:=\mathrm{K}\left(\mathcal{M}^{*}\right)$ (for part 2-2

$$
\text { let } \left.\mathcal{M}_{0}:=\mathrm{K}\left(\mathcal{M}^{*} ; I \cup\{a\}\right) \text { for some } a>1\right) \text {. }
$$

Which subsets of M are I-small?

(3) (Essentially Enayat). For every I-small submodel \mathcal{M}_{0} of \mathcal{M}, it holds that $I \subset M_{0}$.

Which subsets of M are I-small?

(3) (Essentially Enayat). For every I-small submodel \mathcal{M}_{0} of \mathcal{M}, it holds that $I \subset M_{0}$.

$$
\begin{gathered}
\text { Suppose } M_{0}:=\left\{(a)_{i}: i \in I\right\} \text {. Then } \\
X:=I \cap\left\{\langle y, z\rangle \in M: \mathcal{M} \models(a)_{y}=z\right\} \text { is inside } \operatorname{SSy}_{l}(\mathcal{M}) .
\end{gathered}
$$

Which subsets of M are I-small?

(3) (Essentially Enayat). For every I-small submodel \mathcal{M}_{0} of \mathcal{M}, it holds that $I \subset M_{0}$.

Suppose $M_{0}:=\left\{(a)_{i}: i \in I\right\}$. Then
$X:=I \cap\left\{\langle y, z\rangle \in M: \mathcal{M} \models(a)_{y}=z\right\}$ is inside $\operatorname{SSy}_{l}(\mathcal{M})$. Now, if $I \nsubseteq M_{0}$, then $(I ; X) \models \exists x(\forall y\langle y, x\rangle \notin X)$.

Which subsets of M are I-small?

(3) (Essentially Enayat). For every I-small submodel \mathcal{M}_{0} of \mathcal{M}, it holds that $I \subset M_{0}$.

Suppose $M_{0}:=\left\{(a)_{i}: i \in I\right\}$. Then
$X:=I \cap\left\{\langle y, z\rangle \in M: \mathcal{M} \models(a)_{y}=z\right\}$ is inside $\operatorname{SSy}_{l}(\mathcal{M})$. Now, if $I \nsubseteq M_{0}$, then $(I ; X) \models \exists x(\forall y\langle y, x\rangle \notin X)$. Since I is strong, it holds
that $(I ; X) \models \mathrm{PA}^{*}$. So let $(I ; X) \models \mathrm{x}_{0}:=\mu_{x}(\forall y\langle y, x\rangle \notin X)$.
Therefore, $0 \neq x_{0} \notin M_{0}$ but $x_{0}-1 \in M_{0}$.

Which subsets of M are I-small?

(3) (Essentially Enayat). For every I-small submodel \mathcal{M}_{0} of \mathcal{M}, it holds that $I \subset M_{0}$.

$$
\begin{gathered}
\text { Suppose } M_{0}:=\left\{(a)_{i}: i \in I\right\} \text {. Then } \\
X:=I \cap\left\{\langle y, z\rangle \in M: \mathcal{M} \models(a)_{y}=z\right\} \text { is inside } \operatorname{SSy}(\mathcal{M}) \text {. Now, if } \\
I \nsubseteq M_{0} \text {, then }(I ; X) \models \exists x(\forall y\langle y, x\rangle \notin X) \text {. Since } I \text { is strong, it holds } \\
\text { that }(I ; X) \models \text { PA* }^{*} \text {. So let }(I ; X) \models x_{0}:=\mu_{x}(\forall y\langle y, x\rangle \notin X) . \\
\text { Therefore, } 0 \neq x_{0} \notin M_{0} \text { but } x_{0}-1 \in M_{0} .
\end{gathered}
$$

Question.

Is the strongness of I necessary in the previous statements?

I-small submodels and automorphisms of \mathcal{M}

Results about automorphisms of \mathcal{M}

Schmerl (in Kaye-Kossak-Kotlarski’s 1991 paper)
Suppose \mathcal{M} is a countable recursively saturated model of PA, I is a cut of \mathcal{M}, and \mathcal{M}_{0} is an I-small elementary submodel of \mathcal{M}. Then I is strong in \mathcal{M} iff there exists some automorphism j of \mathcal{M} such that $M_{0}=\operatorname{Fix}(j)$.

Results about automorphisms of \mathcal{M}

Schmerl (in Kaye-Kossak-Kotlarski’s 1991 paper)
Suppose \mathcal{M} is a countable recursively saturated model of PA, I is a cut of \mathcal{M}, and \mathcal{M}_{0} is an I-small elementary submodel of \mathcal{M}. Then I is strong in \mathcal{M} iff there exists some automorphism j of \mathcal{M} such that $M_{0}=\operatorname{Fix}(j)$.

Kossak-Schmerl (1995)
Suppose \mathcal{M} is a countable recursively saturated model of PA. Then:
I) for every small elementary submodel of \mathcal{M}_{0} and every automorphism j of $\mathcal{M}, M_{0} \cap \operatorname{Fix}(j)$ is small in \mathcal{M}.

Results about automorphisms of \mathcal{M}

Schmerl (in Kaye-Kossak-Kotlarski’s 1991 paper)
Suppose \mathcal{M} is a countable recursively saturated model of PA , I is a cut of \mathcal{M}, and \mathcal{M}_{0} is an l-small elementary submodel of \mathcal{M}. Then I is strong in \mathcal{M} iff there exists some automorphism j of \mathcal{M} such that $M_{0}=\operatorname{Fix}(j)$.

Kossak-Schmerl (1995)
Suppose \mathcal{M} is a countable recursively saturated model of PA. Then:
I) for every small elementary submodel of \mathcal{M}_{0} and every automorphism j of $\mathcal{M}, M_{0} \cap \operatorname{Fix}(j)$ is small in \mathcal{M}.
II) The following are equivalent:

1) \mathbb{N} is strong in \mathcal{M}.
2) For every small $\mathcal{M}_{0} \prec \mathcal{M}$ there exists some automorphism j of \mathcal{M} such that $\operatorname{Fix}(j)=M_{0}$.
3) There exists some automorphism j of \mathcal{M} such that $\operatorname{Fix}(j) \subseteq \mathcal{M}(0)$.
4) There exists some automorphism j of \mathcal{M} such that $\operatorname{Fix}(j) \not \equiv \mathcal{M}$.

Results about automorphisms of \mathcal{M}

Kossak-Kotlarski (1996)

Suppose \mathcal{M} is a countable recursively saturated model of PA, $\mathcal{M}_{0}=$ $\left\{(a)_{n}: n \in \mathbb{N}\right\}$ is a small elementary submodel of \mathcal{M} and j is an automorphism \mathcal{M}_{0}. Then there exists an automorphism \hat{j} of \mathcal{M} which extends j iff there exists some $b \in M$ such that $j\left((a)_{n}\right)=(b)_{n}$ for all $n \in \mathbb{N}$, and the same holds for j^{-1}.

Results about automorphisms of \mathcal{M}

Kossak-Kotlarski (1996)

Suppose \mathcal{M} is a countable recursively saturated model of $\mathrm{PA}, \mathcal{M}_{0}=$ $\left\{(a)_{n}: n \in \mathbb{N}\right\}$ is a small elementary submodel of \mathcal{M} and j is an automorphism \mathcal{M}_{0}. Then there exists an automorphism \hat{j} of \mathcal{M} which extends j iff there exists some $b \in M$ such that $j\left((a)_{n}\right)=(b)_{n}$ for all $n \in \mathbb{N}$, and the same holds for j^{-1}.

Enayat (2006)

Suppose $\mathcal{M} \models \mathrm{PA}$ is countable, recursively saturated, and l is a strong cut of \mathcal{M}. Moreover, let \mathcal{M}_{0} be an l-small elementary submodel of \mathcal{M}. Then there exists a group embedding Φ from $\operatorname{Aut}(\mathbb{Q},<)$ into $\operatorname{Aut}(\mathcal{M})$ such that for every fixed point free automorphism j of $(\mathbb{Q},<)$ it holds that $\operatorname{Fix}(\Phi(j))=M_{0}$.

I-small submodels and initial self-embeddings of \mathcal{M}

Friedman's Theorem

Friedman (1973)

Let \mathcal{M}, \mathcal{N} be countable nonstandrd models of PA. The following statements are equivalent:
(1) $\operatorname{SSy}(\mathcal{M})=\operatorname{SSy}(\mathcal{N})$, and $\operatorname{Th}_{\Sigma_{1}}(\mathcal{M}) \subseteq \operatorname{Th}_{\Sigma_{1}}(\mathcal{N})$.
(2) There is an embedding $j: \mathcal{M} \rightarrow \mathcal{N}$ such that $j(\mathrm{M}) \subset_{e} \mathcal{N}$.

Friedman's Theorem

Friedman (1973)

Let \mathcal{M}, \mathcal{N} be countable nonstandrd models of PA. The following statements are equivalent:
(1) $\operatorname{SSy}(\mathcal{M})=\operatorname{SSy}(\mathcal{N})$, and $\operatorname{Th}_{\Sigma_{1}}(\mathcal{M}) \subseteq \operatorname{Th}_{\Sigma_{1}}(\mathcal{N})$.
(2) There is an embedding $j: \mathcal{M} \rightarrow \mathcal{N}$ such that $j(\mathrm{M}) \subset_{e} \mathcal{N}$.

There are many refinements of Friedman's Theorem in the literature. In particular, Ressayre proved a similar result for models of I Σ_{1}. Moreover, Dimitracopoulos and Paris developed a version of Friedman's Theorem for models of I $\Delta_{0}+$ Exp.

I-small submodels as fixed point

B-Enayat (2018)

Suppose $\mathcal{M} \models \mathrm{I} \Sigma_{1}$ is countable and nonstandard and I is a cut of \mathcal{M}. Then the following hold:
(1) I is strong in \mathcal{M} and $I \prec_{\Sigma_{1}} \mathcal{M}$, iff there exists some proper initial self-embedding j of \mathcal{M} such that $\operatorname{Fix}(j)=1$.
(2) \mathbb{N} is strong in \mathcal{M} iff there exists some proper initial self-embedding j of \mathcal{M} such that $\operatorname{Fix}(j)=\mathrm{K}^{1}(\mathcal{M})$.

I-small submodels as fixed point

B-Enayat (2018)

Suppose $\mathcal{M} \models \mathrm{I} \Sigma_{1}$ is countable and nonstandard and I is a cut of \mathcal{M}. Then the following hold:
(1) I is strong in \mathcal{M} and $I \prec_{\Sigma_{1}} \mathcal{M}$, iff there exists some proper initial self-embedding j of \mathcal{M} such that $\operatorname{Fix}(j)=I$.
(2) \mathbb{N} is strong in \mathcal{M} iff there exists some proper initial self-embedding j of \mathcal{M} such that $\operatorname{Fix}(j)=\mathrm{K}^{1}(\mathcal{M})$.

B (2022)
Suppose $\mathcal{M} \models \mathrm{I} \Sigma_{1}$ is countable and nonstandard, I is a cut, and \mathcal{M}_{0} is an I-small Σ_{1}-elementary submodel of \mathcal{M}. Then I is strong in \mathcal{M} iff there exists some proper initial self-embedding j of \mathcal{M} such that $\operatorname{Fix}(j)=M_{0}$.

Sketch of proof of left to right:

- $\mathrm{I}^{1}(\mathcal{M} ; \mathrm{X}):=\left\{x: x \leq a\right.$ for some $\left.a \in \mathrm{~K}^{1}(\mathcal{M} ; X)\right\} \prec \Sigma_{0} \mathcal{M} ;$
- $\mathrm{H}^{1}(\mathcal{M} ; X):=\bigcup_{k \in \omega} \mathrm{H}_{k}^{1}(\mathcal{M} ; X)$, where:

$$
\begin{gathered}
\mathrm{H}_{0}^{1}(\mathcal{M} ; X):=\mathrm{I}^{1}(\mathcal{M} ; X) \text {, and } \\
\mathrm{H}_{k+1}^{1}(\mathcal{M} ; X):=\mathrm{I}^{1}\left(\mathcal{M} ; \mathrm{H}_{k}^{1}(\mathcal{M} ; X)\right) .
\end{gathered}
$$

- $\mathrm{H}^{1}(\mathcal{M} ; X) \prec \Sigma_{1} \mathcal{M}$ and $\mathrm{H}^{1}(\mathcal{M} ; X) \models \mathrm{I} \Sigma_{1}$.

Sketch of proof of left to right:

- $\mathrm{I}^{1}(\mathcal{M} ; X):=\left\{x: x \leq a\right.$ for some $\left.a \in \mathrm{~K}^{1}(\mathcal{M} ; X)\right\} \prec \Sigma_{0} \mathcal{M} ;$
- $\mathrm{H}^{1}(\mathcal{M} ; X):=\bigcup_{k \in \omega} \mathrm{H}_{k}^{1}(\mathcal{M} ; X)$, where:

$$
\begin{gathered}
\mathrm{H}_{0}^{1}(\mathcal{M} ; X):=\mathrm{I}^{1}(\mathcal{M} ; X) \text {, and } \\
\mathrm{H}_{k+1}^{1}(\mathcal{M} ; X):=\mathrm{I}^{1}\left(\mathcal{M} ; \mathrm{H}_{k}^{1}(\mathcal{M} ; X)\right) .
\end{gathered}
$$

- $\mathrm{H}^{1}(\mathcal{M} ; X) \prec \Sigma_{1} \mathcal{M}$ and $\mathrm{H}^{1}(\mathcal{M} ; X) \models \mathrm{I} \Sigma_{1}$.
(i) We will construct some proper initial self-embedding α of $\mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right)$ such that $\operatorname{Fix}(\alpha)=M_{0}$ and $\alpha\left(\mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right)\right)<b$ for some $b \in \mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right)$.

Sketch of proof of left to right:

- $\mathrm{I}^{1}(\mathcal{M} ; X):=\left\{x: x \leq a\right.$ for some $\left.a \in \mathrm{~K}^{1}(\mathcal{M} ; X)\right\} \prec \Sigma_{0} \mathcal{M}$;
- $\mathrm{H}^{1}(\mathcal{M} ; X):=\bigcup_{k \in \omega} \mathrm{H}_{k}^{1}(\mathcal{M} ; X)$, where:

$$
\begin{gathered}
\mathrm{H}_{0}^{1}(\mathcal{M} ; X):=\mathrm{I}^{1}(\mathcal{M} ; X), \text { and } \\
\mathrm{H}_{k+1}^{1}(\mathcal{M} ; X):=\mathrm{I}^{1}\left(\mathcal{M} ; \mathrm{H}_{k}^{1}(\mathcal{M} ; X)\right) .
\end{gathered}
$$

- $\mathrm{H}^{1}(\mathcal{M} ; X) \prec \Sigma_{1} \mathcal{M}$ and $\mathrm{H}^{1}(\mathcal{M} ; X) \models \mathrm{I} \Sigma_{1}$.
(i) We will construct some proper initial self-embedding α of $\mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right)$ such that $\operatorname{Fix}(\alpha)=M_{0}$ and $\alpha\left(\mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right)\right)<b$ for some $b \in \mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right)$.
(ii) By $\mathrm{I} \Sigma_{1}$-version of the Friedman's Theorem, let
$\beta: \mathcal{M} \hookrightarrow \mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right)$ be a proper initial embedding such that $M_{0} \subset \operatorname{Fix}(\beta)$ and $b \in \beta(M)$.

Sketch of proof of left to right:

- $\mathrm{I}^{1}(\mathcal{M} ; X):=\left\{x: x \leq a\right.$ for some $\left.a \in \mathrm{~K}^{1}(\mathcal{M} ; X)\right\} \prec \Sigma_{0} \mathcal{M}$;
- $\mathrm{H}^{1}(\mathcal{M} ; X):=\bigcup_{k \in \omega} \mathrm{H}_{k}^{1}(\mathcal{M} ; X)$, where:

$$
\begin{gathered}
\mathrm{H}_{0}^{1}(\mathcal{M} ; X):=\mathrm{I}^{1}(\mathcal{M} ; X), \text { and } \\
\mathrm{H}_{k+1}^{1}(\mathcal{M} ; X):=\mathrm{I}^{1}\left(\mathcal{M} ; \mathrm{H}_{k}^{1}(\mathcal{M} ; X)\right) .
\end{gathered}
$$

- $\mathrm{H}^{1}(\mathcal{M} ; X) \prec \Sigma_{1} \mathcal{M}$ and $\mathrm{H}^{1}(\mathcal{M} ; X) \models \mathrm{I} \Sigma_{1}$.
(i) We will construct some proper initial self-embedding α of $\mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right)$ such that $\operatorname{Fix}(\alpha)=M_{0}$ and $\alpha\left(\mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right)\right)<b$ for some $b \in \mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right)$.
(ii) By $I \Sigma_{1}$-version of the Friedman's Theorem, let
$\beta: \mathcal{M} \hookrightarrow \mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right)$ be a proper initial embedding such that $M_{0} \subset \operatorname{Fix}(\beta)$ and $b \in \beta(M)$.
(iii) Finally, put $j:=\beta^{-1} \alpha \beta$.

Construction of α :

- First by using strong Σ_{1}-Collection in $\mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right)$, we will find some $b \in \mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right)$ such that:

$$
\mathcal{M} \models\left[f\left((a)_{i}\right) \downarrow\right] \rightarrow\left[f\left((a)_{i}\right) \downarrow\right]^{<b}, \text { for all } f \in \mathcal{F} \text { and all } i \in I .
$$

Construction of α :

- First by using strong Σ_{1}-Collection in $\mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right)$, we will find some $b \in \mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right)$ such that:

$$
\mathcal{M} \models\left[f\left((a)_{i}\right) \downarrow\right] \rightarrow\left[f\left((a)_{i}\right) \downarrow\right]^{<b}, \text { for all } f \in \mathcal{F} \text { and all } i \in I .
$$

- Back and forth: We will build finite functions $\bar{u} \mapsto \bar{v}$ of elements of $\mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right)$ such that the following properties hold:
- $\mathrm{P}(\bar{u}, \bar{v}, i, f) \equiv\left[f\left(\bar{u},(a)_{i}\right) \downarrow\right] \rightarrow\left[f\left(\bar{v},(a)_{i}\right) \downarrow\right]^{<b}$, for all $f \in \mathcal{F}$ and $i \in I$,

Construction of α :

- First by using strong Σ_{1}-Collection in $\mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right)$, we will find some $b \in \mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right)$ such that:

$$
\mathcal{M} \models\left[f\left((a)_{i}\right) \downarrow\right] \rightarrow\left[f\left((a)_{i}\right) \downarrow\right]^{<b}, \text { for all } f \in \mathcal{F} \text { and all } i \in I .
$$

- Back and forth: We will build finite functions $\bar{u} \mapsto \bar{v}$ of elements of $\mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right)$ such that the following properties hold:
- $\mathrm{P}(\bar{u}, \bar{v}, i, f) \equiv\left[f\left(\bar{u},(a)_{i}\right) \downarrow\right] \rightarrow\left[f\left(\bar{v},(a)_{i}\right) \downarrow\right]^{<b}$, for all $f \in \mathcal{F}$ and $i \in I$,
- $Q(\bar{u}, \bar{v}, i, f) \equiv\left(\begin{array}{c}{\left[f\left(\bar{u},(a)_{i}\right) \downarrow\right] \wedge} \\ {\left[f\left(\bar{v},(a)_{i}\right) \downarrow\right]^{<b} \wedge} \\ f\left(\bar{u},(a)_{i}\right) \notin M_{0}\end{array}\right) \Rightarrow f\left(\bar{u},(a)_{i}\right) \neq f\left(\bar{v},(a)_{i}\right)$, for all
$f \in \mathcal{F}$ and all $i \in I$.

Construction of α :

Note that $\mathrm{Q}(\bar{u}, \bar{v}, i, f)$ can be written as a Π_{1}-formula; to be more exact, let:

$$
\begin{aligned}
& R:= \\
& \left\{\langle k, t\rangle \in I: \mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right) \models\binom{\left(\left[f\left(\bar{u},(a)_{i}\right) \downarrow\right] \wedge\left[f_{t}\left(\bar{u},(a)_{k}\right) \downarrow\right]\right) \rightarrow}{f\left(\bar{u},(a)_{i}\right)=f_{t}\left(\bar{u},(a)_{k}\right)}\right\} .
\end{aligned}
$$

Construction of α :

Note that $\mathrm{Q}(\bar{u}, \bar{v}, i, f)$ can be written as a Π_{1}-formula; to be more exact, let:

$$
\begin{aligned}
& R:= \\
& \left\{\langle k, t\rangle \in I: \mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right) \models\binom{\left(\left[f\left(\bar{u},(a)_{i}\right) \downarrow\right] \wedge\left[f_{t}\left(\bar{u},(a)_{k}\right) \downarrow\right]\right) \rightarrow}{f\left(\bar{u},(a)_{i}\right)=f_{t}\left(\bar{u},(a)_{k}\right)}\right\} .
\end{aligned}
$$

R is Π_{1}-definable and so coded in $\mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right)$.

Construction of α :

- Forth levels (for making domain of α to be equal to $\mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right)$): Suppose $\bar{u} \mapsto \bar{v}$ is constructed and $m \in \mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right)$ is arbitrary. So w.l.o.g. we can assume that $m \leq t\left(\bar{u},(a)_{i_{0}}\right)$ for some $t \in \mathcal{F}$ and $i_{0} \in I$.

Construction of α :

- Forth levels (for making domain of α to be equal to $\mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right)$): Suppose $\bar{u} \mapsto \bar{v}$ is constructed and $m \in \mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right)$ is arbitrary. So w.l.o.g. we can assume that $m \leq t\left(\bar{u},(a)_{i_{0}}\right)$ for some $t \in \mathcal{F}$ and $i_{0} \in I$.
For every $s \in H^{1}\left(\mathcal{M} ; M_{0}\right)$ be arbitrary and put:
$p_{s}(y):=$
$\left\{y \leq t\left(\bar{v},(a)_{i_{0}}\right)\right\} \cup\left\{\forall i, i^{\prime}<s\binom{P(\bar{u}, m, \bar{v}, y, i, f) \wedge}{\mathrm{Q}\left(\bar{u}, m, \bar{v}, y, i^{\prime}, f^{\prime}\right)}: f, f^{\prime} \in \mathcal{F}\right\}$.

Construction of α :

- Forth levels (for making domain of α to be equal to $\mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right)$): Suppose $\bar{u} \mapsto \bar{v}$ is constructed and $m \in \mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right)$ is arbitrary. So w.l.o.g. we can assume that $m \leq t\left(\bar{u},(a)_{i_{0}}\right)$ for some $t \in \mathcal{F}$ and $i_{0} \in I$.
For every $s \in \mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right)$ be arbitrary and put:
$p_{s}(y):=$
$\left\{y \leq t\left(\bar{v},(a)_{i_{0}}\right)\right\} \cup\left\{\forall i, i^{\prime}<s\binom{\mathrm{P}(\bar{u}, m, \bar{v}, y, i, f) \wedge}{\mathrm{Q}\left(\bar{u}, m, \bar{v}, y, i^{\prime}, f^{\prime}\right)}: f, f^{\prime} \in \mathcal{F}\right\}$.
Our aim is to find some $s>1$ such that the bounded Π_{1}-type $p_{s}(y)$ is finitely satisfiable.

Construction of α :

Define the following function:

$$
\mathrm{G}(x):=\max \{s<b: \mathcal{M} \models \Theta(s, x, \bar{u}, m, \bar{v})\}
$$

in which $\Theta(s, x, \bar{u}, m, \bar{v})$ is the following Δ_{0}-formula:

$$
\forall r, r^{\prime}<x \exists y \leq t\left(\bar{v},(a)_{i_{0}}\right) \forall i, i^{\prime}<s\left(\mathrm{P}\left(\bar{u}, m, \bar{v}, y, i, f_{r}\right) \wedge Q\left(\bar{u}, m, \bar{v}, y, i^{\prime}, f_{r^{\prime}}\right)\right)
$$

Construction of α :

Define the following function:

$$
\mathrm{G}(x):=\max \{s<b: \mathcal{M} \models \Theta(s, x, \bar{u}, m, \bar{v})\}
$$

in which $\Theta(s, x, \bar{u}, m, \bar{v})$ is the following Δ_{0}-formula:
$\forall r, r^{\prime}<x \exists y \leq t\left(\bar{v},(a)_{i_{0}}\right) \forall i, i^{\prime}<s\left(P\left(\bar{u}, m, \bar{v}, y, i, f_{r}\right) \wedge Q\left(\bar{u}, m, \bar{v}, y, i^{\prime}, f_{r^{\prime}}\right)\right)$. Intuitively, $\mathrm{G}(x)$ is the largest element s less than b such that $p_{s}(y)$ is satisfiable for elements f_{r} such that $r<x$.

Construction of α :

Define the following function:

$$
\mathrm{G}(x):=\max \{s<b: \mathcal{M} \models \Theta(s, x, \bar{u}, m, \bar{v})\}
$$

in which $\Theta(s, x, \bar{u}, m, \bar{v})$ is the following Δ_{0}-formula:
$\forall r, r^{\prime}<x \exists y \leq t\left(\bar{v},(a)_{i_{0}}\right) \forall i, i^{\prime}<s\left(P\left(\bar{u}, m, \bar{v}, y, i, f_{r}\right) \wedge \mathrm{Q}\left(\bar{u}, m, \bar{v}, y, i^{\prime}, f_{r^{\prime}}\right)\right)$. Intuitively, $\mathrm{G}(x)$ is the largest element s less than b such that $p_{s}(y)$ is satisfiable for elements f_{r} such that $r<x$.

Now by strongness of I there exists some $e>1$ such that $\mathrm{G}(i)>1$ iff $\mathrm{G}(i)>e$ for all $i \in I$.

Construction of α :

Define the following function:

$$
\mathrm{G}(x):=\max \{s<b: \mathcal{M} \models \Theta(s, x, \bar{u}, m, \bar{v})\}
$$

in which $\Theta(s, x, \bar{u}, m, \bar{v})$ is the following Δ_{0}-formula:
$\forall r, r^{\prime}<x \exists y \leq t\left(\bar{v},(a)_{i_{0}}\right) \forall i, i^{\prime}<s\left(P\left(\bar{u}, m, \bar{v}, y, i, f_{r}\right) \wedge Q\left(\bar{u}, m, \bar{v}, y, i^{\prime}, f_{r^{\prime}}\right)\right)$. Intuitively, $\mathrm{G}(x)$ is the largest element s less than b such that $p_{s}(y)$ is satisfiable for elements f_{r} such that $r<x$.

Now by strongness of I there exists some $e>1$ such that $\mathrm{G}(i)>1$ iff $\mathrm{G}(i)>e$ for all $i \in I$. We will show that $p_{e}(y)$ is a finitely satisfiable type.

Construction of α :

Lemma

For every finite number of elements of \mathcal{F}, say $f, f_{n_{1}}, \ldots, f_{n_{k}}$, there exists some s > I such that:

$$
\mathcal{M} \models \exists y<t\left(\bar{v},(a)_{i_{0}}\right) \forall i, i^{\prime}<s\left(\mathrm{P}(\bar{u}, m, \bar{v}, y, i, f) \wedge \bigwedge_{w=1}^{k} \mathrm{Q}\left(\bar{u}, m, \bar{v}, y, i^{\prime}, f_{n_{w}}\right)\right) .
$$

Construction of α :

Lemma

For every finite number of elements of \mathcal{F}, say $f, f_{n_{1}}, \ldots, f_{n_{k}}$, there exists some s > I such that:

$$
\mathcal{M} \models \exists y<t\left(\bar{v},(a)_{i_{0}}\right) \forall i, i^{\prime}<s\left(\mathrm{P}(\bar{u}, m, \bar{v}, y, i, f) \wedge \bigwedge_{w=1}^{k} \mathrm{Q}\left(\bar{u}, m, \bar{v}, y, i^{\prime}, f_{n_{w}}\right)\right) .
$$

First not that by $I \Sigma_{1}$-version of Friedman's Theorem, for all $s>1$ it holds that:
$\mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right) \models \exists y<t\left(\bar{v},(a)_{i_{0}}\right) \forall i<s \mathrm{P}(\bar{u}, m, \bar{v}, y, i, f)$, for all $f \in \mathcal{F}$.

Construction of α :

Lemma

For every finite number of elements of \mathcal{F}, say $f, f_{n_{1}}, \ldots, f_{n_{k}}$, there exists some s > I such that:

$$
\mathcal{M} \models \exists y<\mathrm{t}\left(\bar{v},(a)_{i_{0}}\right) \forall i, i^{\prime}<\mathrm{s}\left(\mathrm{P}(\bar{u}, m, \bar{v}, y, i, f) \wedge \bigwedge_{w=1}^{k} \mathrm{Q}\left(\bar{u}, m, \bar{v}, y, i^{\prime}, f_{n_{w}}\right)\right) .
$$

First not that by Σ_{1}-version of Friedman's Theorem, for all $s>1$ it holds that:
$\mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right) \models \exists y<t\left(\bar{v},(a)_{i_{0}}\right) \forall i<s \mathrm{P}(\bar{u}, m, \bar{v}, y, i, f)$, for all $f \in \mathcal{F}$. So in order to prove $p_{e}(y)$ is finitely satisfiable, suppose $f \in \mathcal{F}$ and $f_{n_{1}}, \ldots, f_{n_{k}} \in \mathcal{F}$ are given.

Construction of α :

Lemma

For every finite number of elements of \mathcal{F}, say $f, f_{n_{1}}, \ldots, f_{n_{k}}$, there exists some s > I such that:

$$
\mathcal{M} \models \exists y<t\left(\bar{v},(a)_{i_{0}}\right) \forall i, i^{\prime}<\mathrm{s}\left(\mathrm{P}(\bar{u}, m, \bar{v}, y, i, f) \wedge \bigwedge_{w=1}^{k} \mathrm{Q}\left(\bar{u}, m, \bar{v}, y, i^{\prime}, f_{n_{w}}\right)\right) .
$$

First not that by Σ_{1}-version of Friedman's Theorem, for all $s>1$ it holds that:
$\mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right) \models \exists y<t\left(\bar{v},(a)_{i_{0}}\right) \forall i<s \mathrm{P}(\bar{u}, m, \bar{v}, y, i, f)$, for all $f \in \mathcal{F}$. So in order to prove $p_{e}(y)$ is finitely satisfiable, suppose $f \in \mathcal{F}$ and $f_{n_{1}}, \ldots, f_{n_{k}} \in \mathcal{F}$ are given. Then by repeating the above Lemma for all $f_{r} s$ such that $r<k^{\prime}:=\max \left\{n_{k},\ulcorner f\urcorner\right\}+1$, we will find some $s>\mid$ such that the Lemma holds.

Construction of α :

Lemma

For every finite number of elements of \mathcal{F}, say $f, f_{n_{1}}, \ldots, f_{n_{k}}$, there exists some s > I such that:

$$
\mathcal{M} \models \exists y<t\left(\bar{v},(a)_{i_{0}}\right) \forall i, i^{\prime}<s\left(\mathrm{P}(\bar{u}, m, \bar{v}, y, i, f) \wedge \bigwedge_{w=1}^{k} \mathrm{Q}\left(\bar{u}, m, \bar{v}, y, i^{\prime}, f_{n_{w}}\right)\right)
$$

First not that by Σ_{1}-version of Friedman's Theorem, for all $s>1$ it holds that:
$\mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right) \models \exists y<t\left(\bar{v},(a)_{i_{0}}\right) \forall i<s \mathrm{P}(\bar{u}, m, \bar{v}, y, i, f)$, for all $f \in \mathcal{F}$. So in order to prove $p_{e}(y)$ is finitely satisfiable, suppose $f \in \mathcal{F}$ and $f_{n_{1}}, \ldots, f_{n_{k}} \in \mathcal{F}$ are given. Then by repeating the above Lemma for all $f_{r} s$ such that $r<k^{\prime}:=\max \left\{n_{k},\ulcorner f\urcorner\right\}+1$, we will find some $s>I$ such that the Lemma holds. So by the definition $\mathrm{G}\left(k^{\prime}\right) \geq s>I$.

Construction of α :

Lemma

For every finite number of elements of \mathcal{F}, say $f, f_{n_{1}}, \ldots, f_{n_{k}}$, there exists somes > I such that:

$$
\mathcal{M} \models \exists y<t\left(\bar{v},(a)_{i_{0}}\right) \forall i, i^{\prime}<s\left(\mathrm{P}(\bar{u}, m, \bar{v}, y, i, f) \wedge \bigwedge_{w=1}^{k} \mathrm{Q}\left(\bar{u}, m, \bar{v}, y, i^{\prime}, f_{n_{w}}\right)\right) .
$$

First not that by $I \Sigma_{1}$-version of Friedman's Theorem, for all $s>1$ it holds that:
$\mathrm{H}^{1}\left(\mathcal{M} ; M_{0}\right) \models \exists y<t\left(\bar{v},(a)_{i_{0}}\right) \forall i<s \mathrm{P}(\bar{u}, m, \bar{v}, y, i, f)$, for all $f \in \mathcal{F}$. So in order to prove $p_{e}(y)$ is finitely satisfiable, suppose $f \in \mathcal{F}$ and $f_{n_{1}}, \ldots, f_{n_{k}} \in \mathcal{F}$ are given. Then by repeating the above Lemma for all $f_{r} s$ such that $r<k^{\prime}:=\max \left\{n_{k},\ulcorner f\urcorner\right\}+1$, we will find some $s>\mid$ such that the Lemma holds. So by the definition $\mathrm{G}\left(k^{\prime}\right) \geq s>I$. As a result, $\mathrm{G}\left(k^{\prime}\right)>e$; which means the type $p_{e}(y)$ is satisfied for $f, f_{n_{1}}, \ldots, f_{n_{k}}$.

The standard cut

Corollary

Let $\mathcal{M} \models \mathrm{I} \Sigma_{1}$ be countable and nonstandard. T.F.A.E:

1) \mathbb{N} is strong in \mathcal{M}.
2) For every small $\mathcal{M}_{0} \prec_{\Sigma_{1}} \mathcal{M}$ there exists some proper initial self-embedding j of \mathcal{M} such that $\operatorname{Fix}(j)=M_{0}$.
3) There exists some proper initial self-embedding j of \mathcal{M} such that $\operatorname{Fix}(j) \subseteq I^{1}(\mathcal{M})$.

The standard cut

Corollary

Let $\mathcal{M} \models \mathrm{I} \Sigma_{1}$ be countable and nonstandard. T.F.A.E:

1) \mathbb{N} is strong in \mathcal{M}.
2) For every small $\mathcal{M}_{0} \prec_{\Sigma_{1}} \mathcal{M}$ there exists some proper initial self-embedding j of \mathcal{M} such that $\operatorname{Fix}(j)=M_{0}$.
3) There exists some proper initial self-embedding j of \mathcal{M} such that $\operatorname{Fix}(j) \subseteq I^{1}(\mathcal{M})$.

If $\mathcal{M} \models \mathrm{PA}$ is recursively saturated, then the above statements are equivalent to the following:
4) There exists some proper initial self-embedding j of \mathcal{M} such that $\operatorname{Fix}(j) \models B \Sigma_{1}$ and it is isomorphic to no proper initial segments of \mathcal{M}.

The standard cut

Proof.

$(3) \Rightarrow(1):$ There exists some proper initial self-embedding j of \mathcal{M} such that $\operatorname{Fix}(j) \subseteq I^{1}(\mathcal{M})$.

The standard cut

Proof.

$(3) \Rightarrow(1)$: There exists some proper initial self-embedding j of \mathcal{M} such that $\operatorname{Fix}(j) \subseteq I^{1}(\mathcal{M})$. First by strong Σ_{1}-collection axiom in \mathcal{M}, there exists some $b \in M \backslash I^{1}(\mathcal{M})$.

The standard cut

Proof.

$(3) \Rightarrow(1)$: There exists some proper initial self-embedding j of \mathcal{M} such that $\operatorname{Fix}(j) \subseteq \mathrm{I}^{1}(\mathcal{M})$. First by strong Σ_{1}-collection axiom in \mathcal{M}, there exists some $b \in M \backslash I^{1}(\mathcal{M})$. Now, suppose \mathbb{N} is not strong in \mathcal{M}.

The standard cut

Proof.

(3) $\Rightarrow(1)$: There exists some proper initial self-embedding j of \mathcal{M} such that $\operatorname{Fix}(j) \subseteq I^{1}(\mathcal{M})$. First by strong Σ_{1}-collection axiom in \mathcal{M}, there exists some $b \in M \backslash I^{1}(\mathcal{M})$. Now, suppose \mathbb{N} is not strong in \mathcal{M}.

Lemma. Suppose $\mathcal{M} \vDash \mathrm{I} \Sigma_{1}$ in which \mathbb{N} is not a strong cut, and j is a self-embedding of \mathcal{M}, then for every element $b \in M$ there exists an element $c \in \operatorname{Fix}(j)$ such that $\operatorname{Th}_{\Sigma_{1}}(\mathcal{M} ; b) \subseteq \operatorname{Th}_{\Sigma_{1}}(\mathcal{M} ; c)$.

The standard cut

Proof.

(3) $\Rightarrow(1)$: There exists some proper initial self-embedding j of \mathcal{M} such that $\operatorname{Fix}(j) \subseteq I^{1}(\mathcal{M})$. First by strong Σ_{1}-collection axiom in \mathcal{M}, there exists some $b \in M \backslash I^{1}(\mathcal{M})$. Now, suppose \mathbb{N} is not strong in \mathcal{M}.

Lemma. Suppose $\mathcal{M} \models \mathrm{I} \Sigma_{1}$ in which \mathbb{N} is not a strong cut, and j is a self-embedding of \mathcal{M}, then for every element $b \in M$ there exists an element $c \in \operatorname{Fix}(j)$ such that $\operatorname{Th}_{\Sigma_{1}}(\mathcal{M} ; b) \subseteq \operatorname{Th}_{\Sigma_{1}}(\mathcal{M} ; c)$.

As a result, there exists some $c \in \operatorname{Fix}(j)$ such that $\operatorname{Th}_{\Sigma_{1}}(\mathcal{M} ; b) \subseteq \operatorname{Th}_{\Sigma_{1}}(\mathcal{M} ; c)$. Which is a contradiction.

The standard cut

Proof.

(2) \Rightarrow (4): Let \mathcal{M}_{0} be the small recursively saturated elementary submodel of \mathcal{M} we talked about in the previous slides.

The standard cut

Proof.

(2) \Rightarrow (4): Let \mathcal{M}_{0} be the small recursively saturated elementary submodel of \mathcal{M} we talked about in the previous slides. So by (2) there exists some proper initial self-embedding j of \mathcal{M} s.t. $\operatorname{Fix}(j)=M_{0}$.

The standard cut

Proof.

(2) \Rightarrow (4): Let \mathcal{M}_{0} be the small recursively saturated elementary submodel of \mathcal{M} we talked about in the previous slides. So by (2) there exists some proper initial self-embedding j of \mathcal{M} s.t. $\operatorname{Fix}(j)=M_{0}$. Since M_{0} is small, $\operatorname{SSy}\left(\mathcal{M}_{0}\right) \neq \operatorname{SSy}(\mathcal{M})$, so it cannot be isomorphic to any initial segments of \mathcal{M}.

The standard cut

Proof.

$(2) \Rightarrow(4)$: Let \mathcal{M}_{0} be the small recursively saturated elementary submodel of \mathcal{M} we talked about in the previous slides. So by (2) there exists some proper initial self-embedding j of \mathcal{M} s.t. $\operatorname{Fix}(j)=M_{0}$. Since M_{0} is small, $\operatorname{SSy}\left(\mathcal{M}_{0}\right) \neq \operatorname{SSy}(\mathcal{M})$, so it cannot be isomorphic to any initial segments of \mathcal{M}.
(4) \Rightarrow (1): There exists some proper initial self-embedding j of \mathcal{M} such that $\operatorname{Fix}(j) \models B \Sigma_{1}$ and it is isomorphic to no proper initial segments of \mathcal{M}.

The standard cut

Proof.

$(2) \Rightarrow(4)$: Let \mathcal{M}_{0} be the small recursively saturated elementary submodel of \mathcal{M} we talked about in the previous slides. So by (2) there exists some proper initial self-embedding j of \mathcal{M} s.t. $\operatorname{Fix}(j)=M_{0}$. Since M_{0} is small, $\operatorname{SSy}\left(\mathcal{M}_{0}\right) \neq \operatorname{SSy}(\mathcal{M})$, so it cannot be isomorphic to any initial segments of \mathcal{M}.
(4) \Rightarrow (1): There exists some proper initial self-embedding j of \mathcal{M} such that $\operatorname{Fix}(j) \models B \Sigma_{1}$ and it is isomorphic to no proper initial segments of \mathcal{M}. If \mathbb{N} is not strong, by the previous Lemma for every $a \in M$, there exists some $b \in \operatorname{Fix}(j)$ such that $\mathbb{N} \cap a_{E}=\mathbb{N} \cap b_{E}$. As a result, $\operatorname{SSy}(\operatorname{Fix}(j))=\operatorname{SSy}(\mathcal{M})$.

The standard cut

Proof.

(2) \Rightarrow (4): Let \mathcal{M}_{0} be the small recursively saturated elementary submodel of \mathcal{M} we talked about in the previous slides. So by (2) there exists some proper initial self-embedding j of \mathcal{M} s.t. $\operatorname{Fix}(j)=M_{0}$. Since M_{0} is small, $\operatorname{SSy}\left(\mathcal{M}_{0}\right) \neq \operatorname{SSy}(\mathcal{M})$, so it cannot be isomorphic to any initial segments of \mathcal{M}.
(4) \Rightarrow (1): There exists some proper initial self-embedding j of \mathcal{M} such that $\operatorname{Fix}(j) \models B \Sigma_{1}$ and it is isomorphic to no proper initial segments of \mathcal{M}. If \mathbb{N} is not strong, by the previous Lemma for every $a \in M$, there exists some $b \in \operatorname{Fix}(j)$ such that $\mathbb{N} \cap a_{E}=\mathbb{N} \cap b_{E}$. As a result, $\operatorname{SSy}(\operatorname{Fix}(j))=\operatorname{SSy}(\mathcal{M})$. Moreover, $\operatorname{Fix}(j) \preceq_{\Sigma_{1}} \mathcal{M}$.

The standard cut

Proof.

(2) \Rightarrow (4): Let \mathcal{M}_{0} be the small recursively saturated elementary submodel of \mathcal{M} we talked about in the previous slides. So by (2) there exists some proper initial self-embedding j of \mathcal{M} s.t. $\operatorname{Fix}(j)=M_{0}$. Since M_{0} is small, $\operatorname{SSy}\left(\mathcal{M}_{0}\right) \neq \operatorname{SSy}(\mathcal{M})$, so it cannot be isomorphic to any initial segments of \mathcal{M}.
(4) \Rightarrow (1): There exists some proper initial self-embedding j of \mathcal{M} such that $\operatorname{Fix}(j) \models B \Sigma_{1}$ and it is isomorphic to no proper initial segments of \mathcal{M}. If \mathbb{N} is not strong, by the previous Lemma for every $a \in M$, there exists some $b \in \operatorname{Fix}(j)$ such that $\mathbb{N} \cap a_{E}=\mathbb{N} \cap b_{E}$. As a result, $\operatorname{SSy}(\operatorname{Fix}(j))=\operatorname{SSy}(\mathcal{M})$. Moreover, $\operatorname{Fix}(j) \preceq_{\Sigma_{1}} \mathcal{M}$. So by I $\Delta_{0}+$ Exp-version of the Friedman's Theorem, there exists a proper initial embedding from $\operatorname{Fix}(j)$ into \mathcal{M}, which contradicts (4).

I-small submodels and extendability of initial self-embeddings of \mathcal{M}

Theorem (B 2022)

Suppose $\mathcal{M} \models I \Sigma_{1}$ is countable and nonstandard, I is a strong cut of $\mathcal{M}, \mathcal{M}_{0}$ is an 1 -small Σ_{1}-elementary submodel of \mathcal{M} such that $M_{0}:=\left\{(a)_{i}: i \in I\right\}$, and j is an initial self-embedding of \mathcal{M}_{0} such that $j(I) \subseteq_{e} \mathcal{M}$. Then the following are equivalent:
(1) j extends to some proper initial self-embedding of \mathcal{M}.
(2) \cdot There exists some $b \in M$ such that $\mathcal{M} \models j\left((a)_{i}\right)=(b)_{(i)}$ for all $i \in I$, and

- for every subset A of M_{0} it holds that:

$$
A \in \operatorname{SSy}_{l}(\mathcal{M}) \text { iff } j(A) \in \operatorname{SSy}_{j(l)}(\mathcal{M})
$$

Thank you!

Construction of α :

Lemma

For every finite number of elements of \mathcal{F}, say $f, f_{n_{1}}, \ldots, f_{n_{k}}$, there exists some s > I such that:

$$
\mathcal{M} \models \exists y<t\left(\bar{v},(a)_{i_{0}}\right) \forall i<s\left(\mathrm{P}(\bar{u}, m, \bar{v}, y, i, f) \wedge \bigwedge_{w=1}^{k} \mathrm{Q}\left(\bar{u}, m, \bar{v}, y, i, f_{n_{w}}\right)\right) .
$$

Proof of Lemma:

Suppose not; i.e. there exists the least $k_{0} \in \omega$ for which there exist some $f \in \mathcal{F}$ and k_{0}-many elements $f_{n_{1}}, \ldots, f_{n_{k_{0}}}$ of \mathcal{F} such that for all $s>1$:
(1): $\quad \mathcal{M} \vDash \forall y<t\left(\bar{v},(a)_{i_{0}}\right) \forall i<s \neg\binom{\mathrm{P}(\bar{u}, m, \bar{v}, y, i, f) \wedge}{\bigwedge_{w=1}^{R_{0}} \mathrm{Q}\left(\bar{u}, m, \bar{v}, y, i, f_{n_{w}}\right)}$.

Construction of α :

To make things a little more clear, by taking a look at $\mathrm{P}(\bar{u}, m, \bar{v}, y, i, f)$ and $\mathrm{Q}\left(\bar{u}, m, \bar{v}, y, i, f_{n_{w}}\right)$, statement (1) states that:
for all $y<t\left(\bar{v},(a)_{i_{0}}\right)$ and all $\epsilon \in M_{0}$ if $\overbrace{[f(\bar{u}, m, \epsilon) \downarrow] \rightarrow[f(\bar{v}, y, \epsilon) \downarrow]}^{\mathrm{P}(\bar{u}, m, \bar{v}, y, \epsilon, f)}$, then there exists some $\xi \in M_{0}$ and some $w=1, \ldots, k_{0}$ s.t.

$$
\neg Q\left(\bar{u}, m, \bar{v}, y, \xi, f_{n}\right)
$$

$$
\overbrace{\left[f_{n_{w}}(\bar{u}, m, \xi) \downarrow\right] \wedge\left[f_{n_{w}}(\bar{v}, y, \xi) \downarrow\right] \wedge f_{n_{w}}(\bar{u}, m, \xi)=f_{n_{w}}(\bar{v}, y, \xi)} .
$$

Construction of α :

To make things a little more clear, by taking a look at $\mathrm{P}(\bar{u}, m, \bar{v}, y, i, f)$ and $\mathrm{Q}\left(\bar{u}, m, \bar{v}, y, i, f_{n_{w}}\right)$, statement (1) states that:
for all $y<t\left(\bar{v},(a)_{i_{0}}\right)$ and all $\epsilon \in M_{0}$ if $\overbrace{[f(\bar{u}, m, \epsilon) \downarrow] \rightarrow[f(\bar{v}, y, \epsilon) \downarrow]}^{\mathrm{P}(\bar{u}, m, \bar{v}, y, \epsilon, f)}$, then there exists some $\xi \in M_{0}$ and some $w=1, \ldots, k_{0}$ s.t.

$$
\neg Q\left(\bar{u}, m, \overline{\bar{v}}, \boldsymbol{y}, \xi, f_{n_{w}}\right)
$$

$$
\overbrace{\left[n_{n_{w}}(\bar{u}, m, \xi) \downarrow\right] \wedge\left[f_{n_{w}}(\bar{v}, y, \xi) \downarrow\right] \wedge f_{n_{w}}(\bar{u}, m, \xi)=f_{n_{w}}(\bar{v}, y, \xi)} .
$$

By quantifying out $f_{n_{w}}(\bar{u}, m, \xi)$ s from the above statement, it holds that:

There exists some x s.t. for all $y<t\left(\bar{v},(a)_{i_{0}}\right)$ and all $\epsilon \in M_{0}$ if $[f(\bar{u}, m, \epsilon) \downarrow] \rightarrow[f(\bar{v}, y, \epsilon) \downarrow]$, then there exists some $\xi \in M_{0}$ and some $w=1, \ldots, k_{0}$ s.t. $\left[f_{n_{w}}(\bar{u}, m, \xi) \downarrow\right] \wedge\left[f_{n_{w}}(\bar{v}, y, \xi) \downarrow\right] \wedge(x)_{\left\langle n_{w}, \xi\right\rangle}=f_{n_{w}}(\bar{v}, y, \xi)$.

Construction of α :

Then we separate those subformulas of the above formula which contain parameters \bar{u} and m. It turns out that the subsets defined in $\mathrm{H}^{1}(\mathcal{M} ; I)$ with these subformulas can be coded by suitable elements of M_{0}. As a result, we will have a Σ_{1}-formula whose parameters are only \bar{v} and some elements from M_{0}, say $(a)_{i_{1}}$ and $(a)_{i_{2}}$, which serve as codes the aforementioned subsets of $\mathrm{H}^{1}(\mathcal{M} ; I)$; i.e. it holds that:

There exists some x s.t. for all $y<t\left(\bar{v},(a)_{i_{0}}\right)$ and all $\epsilon \mathrm{E}(a)_{i_{1}}$ if $[f(\bar{v}, y, \epsilon) \downarrow]$, then there exists some $\xi \mathrm{E}(a)_{i_{2}}$ and some $w=1, \ldots, k_{0}$ s.t.

$$
\left[f_{n_{w}}(\bar{v}, y, \xi) \downarrow\right] \wedge(x)_{<n_{w}, \xi>}=f_{n_{w}}(\bar{v}, y, \xi) .
$$

Construction of α :

Let:

$$
g(\bar{v}):=
$$

the smallest x s.t. for all $y<t\left(\bar{v},(a)_{i_{0}}\right)$ and all $\in \mathrm{E}(a)_{i_{1}}$, if $[f(\bar{v}, y, \epsilon) \downarrow]$, then there exists some $\xi \mathrm{E}(a)_{i_{2}}$ and some $w=1, \ldots, k_{0}$ s.t.

$$
\left[f_{n_{w}}(\bar{v}, y, \xi) \downarrow\right] \wedge(x)_{<n_{w}, \xi>}=f_{n_{w}}(\bar{v}, y, \xi) .
$$

Construction of α :

Let:

$$
g(\bar{v}):=
$$

the smallest x s.t. for all $y<t\left(\bar{v},(a)_{i_{0}}\right)$ and all $\epsilon \mathrm{E}(a)_{i_{1}}$, if $[f(\bar{v}, y, \epsilon) \downarrow]$, then there exists some $\xi \mathrm{E}(a)_{i_{2}}$ and some $w=1, \ldots, k_{0}$ s.t.

$$
\left[f_{n_{w}}(\bar{v}, y, \xi) \downarrow\right] \wedge(x)_{<n_{w}, \xi>}=f_{n_{w}}(\bar{v}, y, \xi) .
$$

Moreover, we define:

$$
<o(\bar{v}, y), h(\bar{v}, y)>:=
$$

the smallest $<n_{w}, \xi>$ s.t $1 \leq w \leq k_{0}$ and $\xi \mathrm{E}(a)_{i_{2}}$ and $\epsilon \mathrm{E}(a)_{i_{1}}$, if $[f(\bar{v}, y, \epsilon) \downarrow]$, then $\left[f_{n_{w}}(\bar{v}, y, \xi) \downarrow\right] \wedge(g(\bar{v}))_{<n_{w}, \xi>}=f_{n_{w}}(\bar{v}, y, \xi)$.

Construction of α :

So it holds that:

$$
\mathcal{M} \models \forall y<t\left(\bar{v},(a)_{i_{0}}\right) \forall \epsilon \mathrm{E}(a)_{i_{1}}\binom{[f(\bar{v}, y, \epsilon) \downarrow] \rightarrow}{[<o(\bar{v}, y), h(\bar{v}, y)>\downarrow]} .
$$

Construction of α :

So it holds that:

$$
\mathcal{M} \models \forall y<t\left(\bar{v},(a)_{i_{0}}\right) \forall \epsilon \mathrm{E}(a)_{i_{1}}\binom{[f(\bar{v}, y, \epsilon) \downarrow] \rightarrow}{[<o(\bar{v}, y), h(\bar{v}, y)>\downarrow]} .
$$

Then by induction hypothesis:

$$
\mathcal{M} \models \forall y<t\left(\bar{u},(a)_{i_{0}}\right) \forall \epsilon \mathrm{E}(a)_{i_{1}}\binom{[f(\bar{u}, y, \epsilon) \downarrow] \rightarrow}{[<o(\bar{u}, y), h(\bar{u}, y)>\downarrow]} .
$$

Construction of α :

So it holds that:

$$
\mathcal{M} \models \forall y<t\left(\bar{v},(a)_{i_{0}}\right) \forall \epsilon \mathrm{E}(a)_{i_{1}}\binom{[f(\bar{v}, y, \epsilon) \downarrow] \rightarrow}{[<o(\bar{v}, y), h(\bar{v}, y)>\downarrow]} .
$$

Then by induction hypothesis:
$\mathcal{M} \models \forall y<t\left(\bar{u},(a)_{i_{0}}\right) \forall \epsilon \mathrm{E}(a)_{i_{1}}\binom{[f(\bar{u}, y, \epsilon) \downarrow] \rightarrow}{[<o(\bar{u}, y), h(\bar{u}, y)>\downarrow]}$.
If $k_{0}>1$:
$\mathcal{M} \models \forall y<t\left(\bar{v},(a)_{i_{0}}\right) \forall i<s \neg\binom{P\left(\bar{u}, m, \bar{v}, y, i, f^{\prime}\right) \wedge}{\bigwedge_{w=2}^{k_{0}} \mathrm{Q}\left(\bar{u}, m, \bar{v}, y, i, f_{n_{w}}\right)}$; in which f^{\prime}
is:
$f^{\prime}(\diamond, y)=\Leftrightarrow f(\diamond, y)=\wedge[<o(\diamond, y), h(\diamond, y)>]$.

Construction of α :

So it holds that:

$$
\mathcal{M} \models \forall y<t\left(\bar{v},(a)_{i_{0}}\right) \forall \epsilon \mathrm{E}(a)_{i_{1}}\binom{[f(\bar{v}, y, \epsilon) \downarrow] \rightarrow}{[<o(\bar{v}, y), h(\bar{v}, y)>\downarrow]} .
$$

Then by induction hypothesis:
$\mathcal{M} \models \forall y<t\left(\bar{u},(a)_{i_{0}}\right) \forall \epsilon \mathrm{E}(a)_{i_{1}}\binom{[f(\bar{u}, y, \epsilon) \downarrow] \rightarrow}{[<o(\bar{u}, y), h(\bar{u}, y)>\downarrow]}$.
If $k_{0}>1$:
$\mathcal{M} \models \forall y<t\left(\bar{v},(a)_{i_{0}}\right) \forall i<s \neg\binom{\mathrm{P}\left(\bar{u}, m, \bar{v}, y, i, f^{\prime}\right) \wedge}{\bigwedge_{w=2}^{k_{0}} \mathrm{Q}\left(\bar{u}, m, \bar{v}, y, i, f_{n_{w}}\right)}$; in which f^{\prime}
is:
$f^{\prime}(\diamond, y)=\Leftrightarrow f(\diamond, y)=\wedge[<0(\diamond, y), h(\diamond, y)>]$.
But this contradicts the minimality of k_{0}.

Construction of α :

If $k_{0}=1:$

- \mathcal{M} thinks that the cardinality of

$$
A:=\left\{h(\bar{u}, y): \mathcal{M} \models\left(y<t\left(\bar{u},(a)_{i_{0}}\right) \wedge[h(\bar{u}, y) \downarrow]\right)\right\} \text { is at most }
$$ equal to the cardinality of $\left((a)_{i_{1}}\right)_{\mathrm{E}}$.

Construction of α :

If $k_{0}=1$:

- \mathcal{M} thinks that the cardinality of
$A:=\left\{h(\bar{u}, y): \mathcal{M} \models\left(y<t\left(\bar{u},(a)_{i_{0}}\right) \wedge[h(\bar{u}, y) \downarrow]\right)\right\}$ is at most equal to the cardinality of $\left((a)_{i_{1}}\right)_{\mathrm{E}}$.
- By using the previous statements, we can build a coded 1-1 function $F \in M$ whose domain contains I and $F(I) \subset A$.

Construction of α :

If $k_{0}=1$:

- \mathcal{M} thinks that the cardinality of

$$
A:=\left\{h(\bar{u}, y): \mathcal{M} \models\left(y<t\left(\bar{u},(a)_{i_{0}}\right) \wedge[h(\bar{u}, y) \downarrow]\right)\right\} \text { is at most }
$$ equal to the cardinality of $\left((a)_{i_{1}}\right)_{\mathrm{E}}$.

- By using the previous statements, we can build a coded 1-1 function $F \in M$ whose domain contains I and $F(I) \subset A$.

So again a contradiction is achieved by Σ_{1}-Pigeonhole Principle.

