I-small submodels of countable models of arithmetic

Saeideh Bahrami Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

CUNY Graduate Center, NY MOPA Seminars, 21 November 2023

Set Theory vs Arithmetic

Set Theory Cardinal Regular cardinal Weakly compact cardinal

<u>Arithmetic</u> Cut Semiregular cut Strong cut

Set Theory vs Arithmetic

Set Theory Cardinal Regular cardinal Weakly compact cardinal <u>Arithmetic</u> Cut Semiregular cut Strong cut

Independence results

• Let $\mathcal{M} := (\mathcal{M}; 0, 1, +, ., <)$ be a model of $I\Sigma_1$ (i.e. the fragment of PA in which induction scheme is restricted to Σ_1 -formulas).

- Let $\mathcal{M} := (M; 0, 1, +, ., <)$ be a model of $I\Sigma_1$ (i.e. the fragment of PA in which induction scheme is restricted to Σ_1 -formulas).
- Let *I* be a *cut* of \mathcal{M} ; i.e. an initial segment with no maximum element.

- Let $\mathcal{M} := (M; 0, 1, +, ., <)$ be a model of $I\Sigma_1$ (i.e. the fragment of PA in which induction scheme is restricted to Σ_1 -formulas).
- Let *I* be a *cut* of \mathcal{M} ; i.e. an initial segment with no maximum element.
- A subset *X* of *M* is *I*-small if there exists some function $f \in M$ such that $f \upharpoonright_I$ is a bijection from *I* onto *X*.

- Let $\mathcal{M} := (M; 0, 1, +, ., <)$ be a model of $I\Sigma_1$ (i.e. the fragment of PA in which induction scheme is restricted to Σ_1 -formulas).
- Let *I* be a *cut* of \mathcal{M} ; i.e. an initial segment with no maximum element.
- A subset X of M is *I-small* if there exists some function $f \in M$ such that $f \upharpoonright_I$ is a bijection from *I* onto X. Equivalently, X is *I-small* iff there exists some $a \in M$ such that:

(1) $X = \{(a)_i : i \in I\}$, and (2) $(a)_i \neq (a)_j$ for all distinct $i, j \in I$.

- Let $\mathcal{M} := (M; 0, 1, +, ., <)$ be a model of $I\Sigma_1$ (i.e. the fragment of PA in which induction scheme is restricted to Σ_1 -formulas).
- Let *I* be a *cut* of \mathcal{M} ; i.e. an initial segment with no maximum element.
- A subset X of M is *I-small* if there exists some function $f \in M$ such that $f \upharpoonright_I$ is a bijection from I onto X. Equivalently, X is *I-small* iff there exists some $a \in M$ such that:

(1) $X = \{(a)_i : i \in I\}$, and (2) $(a)_i \neq (a)_j$ for all distinct $i, j \in I$.

• If $I = \mathbb{N}$, then we simply use *small* instead of \mathbb{N} -small.

- Let $\mathcal{M} := (M; 0, 1, +, ., <)$ be a model of $I\Sigma_1$ (i.e. the fragment of PA in which induction scheme is restricted to Σ_1 -formulas).
- Let *I* be a *cut* of \mathcal{M} ; i.e. an initial segment with no maximum element.
- A subset X of M is *I-small* if there exists some function $f \in M$ such that $f \upharpoonright_I$ is a bijection from I onto X. Equivalently, X is *I-small* iff there exists some $a \in M$ such that:

(1) $X = \{(a)_i : i \in I\}$, and (2) $(a)_i \neq (a)_j$ for all distinct $i, j \in I$.

- If $I = \mathbb{N}$, then we simply use *small* instead of \mathbb{N} -small.
- First appearance: Lascar 1994, Small index property.

- \cdot Properties of I-small subsets of $\mathcal{M}.$
- Automorphism group of a countable recursively saturated model of PA and *I*-small submodels.
- Initial self-embeddings of countable models of $\mathrm{I}\Sigma_1$ and I-small submodels.

Properties of /-small subsets of $\ensuremath{\mathcal{M}}$

 \cdot 1 is I-small in \mathcal{M} .

- \cdot 1 is 1-small in $\mathcal{M}.$
- If $M_0 := \{(a)_i : i \in I\}$ is an *I*-small submodel of \mathcal{M} such that *I* is a proper subset of M_0 , then M_0 is neither cofinal in \mathcal{M} (since *a* is an upper bound for $\{(a)_i : i \in I\}$),

- \cdot 1 is 1-small in $\mathcal{M}.$
- If $M_0 := \{(a)_i : i \in I\}$ is an *I*-small submodel of \mathcal{M} such that *I* is a proper subset of M_0 , then M_0 is neither cofinal in \mathcal{M} (since *a* is an upper bound for $\{(a)_i : i \in I\}$), nor is an initial segment of \mathcal{M} :

- \cdot 1 is 1-small in $\mathcal{M}.$
- If $M_0 := \{(a)_i : i \in I\}$ is an *I*-small submodel of \mathcal{M} such that *I* is a proper subset of M_0 , then M_0 is neither cofinal in \mathcal{M} (since *a* is an upper bound for $\{(a)_i : i \in I\}$), nor is an initial segment of \mathcal{M} :
 - (Ackermann's membership relation). There exists a Δ_0 -formula xEy asserting that "the x-th bit of the binary expansion of y is 1". a_E denotes the set of E-members of a in \mathcal{M} .
 - $SSy_{I}(\mathcal{M}) := \{X \cap I : X \text{ is } \Sigma_{1}\text{-definable in } \mathcal{M}\} = \{a_{E} \cap I : a \in M\}.$
 - If $I \subset_e \mathcal{M} \subseteq_e \mathcal{N}$, then $\mathrm{SSy}_I(\mathcal{M}) = \mathrm{SSy}_I(\mathcal{N})$.

- \cdot 1 is 1-small in $\mathcal{M}.$
- If $M_0 := \{(a)_i : i \in I\}$ is an *I*-small submodel of \mathcal{M} such that *I* is a proper subset of M_0 , then M_0 is neither cofinal in \mathcal{M} (since *a* is an upper bound for $\{(a)_i : i \in I\}$), nor is an initial segment of \mathcal{M} :
 - (Ackermann's membership relation). There exists a Δ_0 -formula xEy asserting that "the x-th bit of the binary expansion of y is 1". a_E denotes the set of E-members of a in \mathcal{M} .
 - $\operatorname{SSy}_{I}(\mathcal{M}) := \{X \cap I : X \text{ is } \Sigma_{1} \text{-definable in } \mathcal{M}\} = \{a_{\mathrm{E}} \cap I : a \in M\}.$
 - If $I \subset_e \mathcal{M} \subseteq_e \mathcal{N}$, then $\mathrm{SSy}_I(\mathcal{M}) = \mathrm{SSy}_I(\mathcal{N})$.

 $A := \{i \in I : \mathcal{M} \models \neg i \mathbb{E}(a)_i\} \neq \emptyset \text{ is inside } SSy_i(\mathcal{M}) \text{ but not in } SSy_i(\mathcal{M}_0).$

- \cdot 1 is 1-small in $\mathcal{M}.$
- If $M_0 := \{(a)_i : i \in I\}$ is an *I*-small submodel of \mathcal{M} such that *I* is a proper subset of M_0 , then M_0 is neither cofinal in \mathcal{M} (since *a* is an upper bound for $\{(a)_i : i \in I\}$), nor is an initial segment of \mathcal{M} :
 - (Ackermann's membership relation). There exists a Δ_0 -formula xEy asserting that "the x-th bit of the binary expansion of y is 1". a_E denotes the set of E-members of a in \mathcal{M} .
 - $SSy_{I}(\mathcal{M}) := \{X \cap I : X \text{ is } \Sigma_{1}\text{-definable in } \mathcal{M}\} = \{a_{E} \cap I : a \in M\}.$
 - If $I \subset_e \mathcal{M} \subseteq_e \mathcal{N}$, then $SSy_I(\mathcal{M}) = SSy_I(\mathcal{N})$.

 $A := \{i \in I : \mathcal{M} \models \neg i \mathbb{E}(a)_i\} \neq \emptyset \text{ is inside } SSy_i(\mathcal{M}) \text{ but not in } SSy_i(\mathcal{M}_0).$

- By Compactness Theorem, there exists some elementary extension ${\cal N}$ of ${\cal M}$ in which ${\cal M}$ is small.

Notation:

- Let $\langle \delta_r : r \in M \rangle$ be a canonical enumeration of all Δ_0 -formulas within \mathcal{M} .
- The predicate $\operatorname{Sat}_{\Delta_0}(x)$ is the truth predicate for Δ_0 -formulas in \mathcal{M} , which is Δ_1 -definable in \mathcal{M} .
- For every $r \in M$, $f_r(\bar{x}) = y$ denotes the following partial Σ_1 -function in \mathcal{M} :

y := the least element such that $\exists z \operatorname{Sat}_{\Delta_0}(\delta_r(\bar{x}, y, z)).$

- The notation $[f_r(\bar{x}) \downarrow]$ denotes the Σ_1 -formula $\exists z, y \operatorname{Sat}_{\Delta_0}(\delta_r(\bar{x}, y, z))$, and $[f_r(\bar{x}) \downarrow]^{\leq w}$ stands for the formula $\exists z, y < w \operatorname{Sat}_{\Delta_0}(\delta_r(\bar{x}, y, z))$.
- + Let ${\mathcal F}$ be the collection of all Ø-definable partial $\Sigma_1\text{-}functions$ in ${\mathcal M}.$

• For every $c \in M$ the subset of Σ_1 -definable elements of \mathcal{M} with c as parameter, denoted by $K^1(\mathcal{M}; c)$ is small in \mathcal{M} :

• For every $c \in M$ the subset of Σ_1 -definable elements of \mathcal{M} with c as parameter, denoted by $\mathrm{K}^1(\mathcal{M}; c)$ is small in \mathcal{M} :

It is easy to see that:

 $\mathrm{K}^{1}(\mathcal{M}; c) = \{f_{n}(c) : n \in \mathbb{N} \text{ and } \mathcal{M} \models [f_{n}(c) \downarrow]\}.$

• For every $c \in M$ the subset of Σ_1 -definable elements of \mathcal{M} with c as parameter, denoted by $K^1(\mathcal{M}; c)$ is small in \mathcal{M} :

It is easy to see that: $K^{1}(\mathcal{M}; c) = \{f_{n}(c) : n \in \mathbb{N} \text{ and } \mathcal{M} \models [f_{n}(c) \downarrow]\}. \text{ Fix some}$ nonstandard $s \in M$, and let $a \in M$ such that: $\mathcal{M} \models \forall r < s \begin{pmatrix} ([f_{r}(c) \downarrow] \rightarrow (a)_{r} = f_{r}(c)) \land \\ (\neg [f_{r}(c) \downarrow] \rightarrow (a)_{r} = 0) \end{pmatrix}.$ • For every $c \in M$ the subset of Σ_1 -definable elements of \mathcal{M} with c as parameter, denoted by $K^1(\mathcal{M}; c)$ is small in \mathcal{M} :

It is easy to see that:

 $\begin{aligned} \mathrm{K}^{1}(\mathcal{M};c) &= \{f_{n}(c): n \in \mathbb{N} \text{ and } \mathcal{M} \models [f_{n}(c) \downarrow]\}. \text{ Fix some} \\ & \text{nonstandard } s \in \mathcal{M}, \text{ and let } \mathbf{a} \in \mathcal{M} \text{ such that:} \\ \mathcal{M} \models \forall r < s \begin{pmatrix} ([f_{r}(c) \downarrow] \rightarrow (\mathbf{a})_{r} = f_{r}(c)) \land \\ (\neg [f_{r}(c) \downarrow] \rightarrow (\mathbf{a})_{r} = 0) \end{pmatrix}. \end{aligned}$

• $K^1(\mathcal{M}; I)$ is the subset of Σ_1 -definable elements of \mathcal{M} with elements of I as parameter.

Suppose *I* is a *strong cut* of \mathcal{M} ; i.e. $I \longrightarrow (I)_a^n$ for all $n \in \omega$ and all $a \in I$.

Suppose *I* is a strong cut of \mathcal{M} ; i.e. $I \longrightarrow (I)_a^n$ for all $n \in \omega$ and all $a \in I$. Equivalently, *I* is strong iff for every function $f \in \mathcal{M}$ whose domain contains *I*, there exists some $e \in \mathcal{M}$ such that $f(i) \in I \Leftrightarrow f(i) < e$ for all $i \in I$.

Suppose *I* is a strong cut of \mathcal{M} ; i.e. $I \longrightarrow (I)_a^n$ for all $n \in \omega$ and all $a \in I$. Equivalently, *I* is strong iff for every function $f \in \mathcal{M}$ whose domain contains *I*, there exists some $e \in \mathcal{M}$ such that $f(i) \in I \Leftrightarrow f(i) < e$ for all $i \in I$.

(1) $\mathrm{K}^{1}(\mathcal{M}; I)$ is *I*-small.

Suppose *I* is a strong cut of \mathcal{M} ; i.e. $I \longrightarrow (I)_a^n$ for all $n \in \omega$ and all $a \in I$. Equivalently, *I* is strong iff for every function $f \in M$ whose domain contains *I*, there exists some $e \in M$ such that $f(i) \in I \Leftrightarrow f(i) < e$ for all $i \in I$.

(1) $\mathrm{K}^{1}(\mathcal{M}; I)$ is *I*-small.

Similar to the previous proof, we find some $a \in M$ such that $K^{1}(\mathcal{M}; I) = \{(a)_{i} : i \in I\}$. In order to make the function $(a)_{i}$ an injection, we inductively define the Δ_{0} -function g in \mathcal{M} such that: $g(0) := (a)_{0}$, and $g(x + 1) := (a)_{r}$ s.t. r is the least element for which $(a)_{r}$ is not between elements of $\{g(z) : z \leq x\}$. Suppose *I* is a strong cut of \mathcal{M} ; i.e. $I \longrightarrow (I)_a^n$ for all $n \in \omega$ and all $a \in I$. Equivalently, *I* is strong iff for every function $f \in M$ whose domain contains *I*, there exists some $e \in M$ such that $f(i) \in I \Leftrightarrow f(i) < e$ for all $i \in I$.

(1) $\mathrm{K}^{1}(\mathcal{M}; I)$ is *I*-small.

Similar to the previous proof, we find some $a \in M$ such that $K^{1}(\mathcal{M}; I) = \{(a)_{i} : i \in I\}$. In order to make the function $(a)_{i}$ an injection, we inductively define the Δ_{0} -function g in \mathcal{M} such that: $g(0) := (a)_{0}$, and $g(x + 1) := (a)_{r}$ s.t. r is the least element for which $(a)_{r}$ is not between elements of $\{g(z) : z \leq x\}$. Then let $h(x) := \mu_{r} ((a)_{r} = g(x))$. Since I is strong there exists some $e \in M$ s.t. $h(i) \in I$ iff h(i) < e for all $i \in I$.

So $M_0 = \{g(i) : i < i_0\}$, which is a contradiction. As a result, $g \upharpoonright_l$ is a bijection from l onto $K^1(\mathcal{M}; l)$.

(2) If *M* is a countable *recursively saturated* model of PA, then:
 2-1) (Kossak-Schmerl (1995)). There exists some small recursively saturated elementary submodel *M*₀ of *M* which has 2^{ℵ₀} elementary submodels.

- (2) If \mathcal{M} is a countable *recursively saturated* model of PA, then:
 - 2-1) (Kossak-Schmerl (1995)). There exists some small recursively saturated elementary submodel \mathcal{M}_0 of \mathcal{M} which has 2^{\aleph_0} elementary submodels.
 - 2-2) There exists some recursively saturated *I*-small elementary submodel *M*₀ of *M*. In particular, *M*₀ is not of the form of K(*M*; *I*).

(2) If \mathcal{M} is a countable *recursively saturated* model of PA, then:

- 2-1) (Kossak-Schmerl (1995)). There exists some small recursively saturated elementary submodel \mathcal{M}_0 of \mathcal{M} which has 2^{\aleph_0} elementary submodels.
- 2-2) There exists some recursively saturated *I*-small elementary submodel *M*₀ of *M*. In particular, *M*₀ is not of the form of K(*M*; *I*).

Let S be a satisfaction class for \mathcal{M} such that $\mathcal{M}^* := (\mathcal{M}; S)$ is also recursively saturate. Then put $\mathcal{M}_0 := K(\mathcal{M}^*)$

(2) If \mathcal{M} is a countable *recursively saturated* model of PA, then:

- 2-1) (Kossak-Schmerl (1995)). There exists some small recursively saturated elementary submodel \mathcal{M}_0 of \mathcal{M} which has 2^{\aleph_0} elementary submodels.
- 2-2) There exists some recursively saturated *I*-small elementary submodel *M*₀ of *M*. In particular, *M*₀ is not of the form of K(*M*; *I*).

Let S be a satisfaction class for \mathcal{M} such that $\mathcal{M}^* := (\mathcal{M}; S)$ is also recursively saturate. Then put $\mathcal{M}_0 := K(\mathcal{M}^*)$ (for part 2-2 let $\mathcal{M}_0 := K(\mathcal{M}^*; l \cup \{a\})$ for some a > l). (3) **(Essentially Enayat).** For every *I*-small submodel \mathcal{M}_0 of \mathcal{M} , it holds that $I \subset M_0$.

(3) (Essentially Enayat). For every *I*-small submodel M₀ of M, it holds that *I* ⊂ M₀.

Suppose $M_0 := \{(a)_i : i \in I\}$. Then $X := I \cap \{\langle y, z \rangle \in M : \mathcal{M} \models (a)_y = z\}$ is inside $SSy_I(\mathcal{M})$. (3) (Essentially Enayat). For every *I*-small submodel \mathcal{M}_0 of \mathcal{M} , it holds that $I \subset M_0$.

Suppose $M_0 := \{(a)_i : i \in I\}$. Then $X := I \cap \{\langle y, z \rangle \in M : \mathcal{M} \models (a)_y = z\}$ is inside $SSy_I(\mathcal{M})$. Now, if $I \nsubseteq M_0$, then $(I; X) \models \exists x \ (\forall y \ \langle y, x \rangle \notin X)$. (3) (Essentially Enayat). For every *I*-small submodel M₀ of M, it holds that *I* ⊂ M₀.

Suppose $M_0 := \{(a)_i : i \in I\}$. Then $X := I \cap \{\langle y, z \rangle \in M : \mathcal{M} \models (a)_y = z\}$ is inside $SSy_I(\mathcal{M})$. Now, if $I \nsubseteq M_0$, then $(I; X) \models \exists x (\forall y \langle y, x \rangle \notin X)$. Since I is strong, it holds that $(I; X) \models PA^*$. So let $(I; X) \models \mathbf{x}_0 := \mu_x (\forall y \langle y, x \rangle \notin X)$. Therefore, $0 \neq \mathbf{x}_0 \notin M_0$ but $\mathbf{x}_0 - 1 \in M_0$. (3) (Essentially Enayat). For every *I*-small submodel M₀ of M, it holds that *I* ⊂ M₀.

Suppose $M_0 := \{(a)_i : i \in I\}$. Then $X := I \cap \{\langle y, z \rangle \in M : \mathcal{M} \models (a)_y = z\}$ is inside $SSy_I(\mathcal{M})$. Now, if $I \nsubseteq M_0$, then $(I; X) \models \exists x (\forall y \langle y, x \rangle \notin X)$. Since I is strong, it holds that $(I; X) \models PA^*$. So let $(I; X) \models \mathbf{x}_0 := \mu_x (\forall y \langle y, x \rangle \notin X)$. Therefore, $0 \neq \mathbf{x}_0 \notin M_0$ but $\mathbf{x}_0 - 1 \in M_0$.

Question.

Is the strongness of I necessary in the previous statements?

$\textit{I}\mbox{-small submodels and automorphisms of <math display="inline">\mathcal M$

Schmerl (in Kaye-Kossak-Kotlarski's 1991 paper)

Suppose \mathcal{M} is a countable recursively saturated model of PA, I is a cut of \mathcal{M} , and \mathcal{M}_0 is an I-small elementary submodel of \mathcal{M} . Then I is strong in \mathcal{M} iff there exists some automorphism j of \mathcal{M} such that $M_0 = \operatorname{Fix}(j)$.

Schmerl (in Kaye-Kossak-Kotlarski's 1991 paper)

Suppose \mathcal{M} is a countable recursively saturated model of PA, I is a cut of \mathcal{M} , and \mathcal{M}_0 is an I-small elementary submodel of \mathcal{M} . Then I is strong in \mathcal{M} iff there exists some automorphism j of \mathcal{M} such that $M_0 = \operatorname{Fix}(j)$.

Kossak-Schmerl (1995)

Suppose ${\mathcal M}$ is a countable recursively saturated model of PA. Then:

I) for every small elementary submodel of \mathcal{M}_0 and every automorphism *j* of $\mathcal{M}, \mathcal{M}_0 \cap \operatorname{Fix}(j)$ is small in \mathcal{M} .

Schmerl (in Kaye-Kossak-Kotlarski's 1991 paper)

Suppose \mathcal{M} is a countable recursively saturated model of PA, I is a cut of \mathcal{M} , and \mathcal{M}_0 is an I-small elementary submodel of \mathcal{M} . Then I is strong in \mathcal{M} iff there exists some automorphism j of \mathcal{M} such that $M_0 = \operatorname{Fix}(j)$.

Kossak-Schmerl (1995)

Suppose \mathcal{M} is a countable recursively saturated model of PA. Then:

- I) for every small elementary submodel of \mathcal{M}_0 and every automorphism *j* of $\mathcal{M}, \mathcal{M}_0 \cap \operatorname{Fix}(j)$ is small in \mathcal{M} .
- II) The following are equivalent:
 - 1) $\mathbb N$ is strong in $\mathcal M.$
 - For every small M₀ ≺ M there exists some automorphism j of M such that Fix(j) = M₀.
 - 3) There exists some automorphism *j* of \mathcal{M} such that $Fix(j) \subseteq \mathcal{M}(0)$.
 - 4) There exists some automorphism *j* of \mathcal{M} such that $Fix(j) \ncong \mathcal{M}$.

Kossak-Kotlarski (1996)

Suppose \mathcal{M} is a countable recursively saturated model of PA, $\mathcal{M}_0 = \{(a)_n : n \in \mathbb{N}\}\$ is a small elementary submodel of \mathcal{M} and j is an automorphism \mathcal{M}_0 . Then there exists an automorphism \hat{j} of \mathcal{M} which extends j iff there exists some $b \in \mathcal{M}$ such that $j((a)_n) = (b)_n$ for all $n \in \mathbb{N}$, and the same holds for j^{-1} .

Kossak-Kotlarski (1996)

Suppose \mathcal{M} is a countable recursively saturated model of PA, $\mathcal{M}_0 = \{(a)_n : n \in \mathbb{N}\}\$ is a small elementary submodel of \mathcal{M} and j is an automorphism \mathcal{M}_0 . Then there exists an automorphism \hat{j} of \mathcal{M} which extends j iff there exists some $b \in \mathcal{M}$ such that $j((a)_n) = (b)_n$ for all $n \in \mathbb{N}$, and the same holds for j^{-1} .

Enayat (2006)

Suppose $\mathcal{M} \models PA$ is countable, recursively saturated, and *I* is a strong cut of \mathcal{M} . Moreover, let \mathcal{M}_0 be an *I*-small elementary submodel of \mathcal{M} . Then there exists a group embedding Φ from Aut($\mathbb{Q}, <$) into Aut(\mathcal{M}) such that for every fixed point free automorphism *j* of ($\mathbb{Q}, <$) it holds that Fix($\Phi(j)$) = M_0 .

$\mbox{\it I-small}$ submodels and initial self-embeddings of $\mathcal M$

Friedman (1973)

Let \mathcal{M} , \mathcal{N} be countable nonstandrd models of PA. The following statements are equivalent:

- (1) $SSy(\mathcal{M}) = SSy(\mathcal{N})$, and $Th_{\Sigma_1}(\mathcal{M}) \subseteq Th_{\Sigma_1}(\mathcal{N})$.
- (2) There is an embedding $j : \mathcal{M} \to \mathcal{N}$ such that $j(\mathbf{M}) \subset_{e} \mathcal{N}$.

Friedman (1973)

Let \mathcal{M} , \mathcal{N} be countable nonstandrd models of PA. The following statements are equivalent:

- (1) $SSy(\mathcal{M}) = SSy(\mathcal{N})$, and $Th_{\Sigma_1}(\mathcal{M}) \subseteq Th_{\Sigma_1}(\mathcal{N})$.
- (2) There is an embedding $j : \mathcal{M} \to \mathcal{N}$ such that $j(\mathbf{M}) \subset_{e} \mathcal{N}$.

There are many refinements of Friedman's Theorem in the literature. In particular, Ressayre proved a similar result for models of I Σ_1 . Moreover, Dimitracopoulos and Paris developed a version of Friedman's Theorem for models of I Δ_0 + Exp.

B-Enayat (2018)

Suppose $\mathcal{M} \models I\Sigma_1$ is countable and nonstandard and *I* is a cut of \mathcal{M} . Then the following hold:

- (1) *I* is strong in \mathcal{M} and $I \prec_{\Sigma_1} \mathcal{M}$, iff there exists some proper initial self-embedding *j* of \mathcal{M} such that $\operatorname{Fix}(j) = I$.
- (2) \mathbb{N} is strong in \mathcal{M} iff there exists some proper initial self-embedding *j* of \mathcal{M} such that $\operatorname{Fix}(j) = \operatorname{K}^{1}(\mathcal{M})$.

B-Enayat (2018)

Suppose $\mathcal{M} \models I\Sigma_1$ is countable and nonstandard and *I* is a cut of \mathcal{M} . Then the following hold:

- (1) *I* is strong in \mathcal{M} and $I \prec_{\Sigma_1} \mathcal{M}$, iff there exists some proper initial self-embedding *j* of \mathcal{M} such that $\operatorname{Fix}(j) = I$.
- (2) \mathbb{N} is strong in \mathcal{M} iff there exists some proper initial self-embedding *j* of \mathcal{M} such that $\operatorname{Fix}(j) = \operatorname{K}^{1}(\mathcal{M})$.

B (2022)

Suppose $\mathcal{M} \models I\Sigma_1$ is countable and nonstandard, *I* is a cut, and \mathcal{M}_0 is an *I*-small Σ_1 -elementary submodel of \mathcal{M} . Then *I* is strong in \mathcal{M} iff there exists some proper initial self-embedding *j* of \mathcal{M} such that $Fix(j) = M_0$.

 $\cdot \ \mathrm{I}^1(\mathcal{M};X) := \{x: \ x \leq a \text{ for some } a \in \mathrm{K}^1(\mathcal{M};X)\} \prec_{\Sigma_0} \mathcal{M};$

•
$$\mathrm{H}^{1}(\mathcal{M}; X) := \bigcup_{k \in \omega} \mathrm{H}^{1}_{k}(\mathcal{M}; X)$$
, where:

 $\begin{aligned} \mathrm{H}^{1}_{0}(\mathcal{M};X) &:= \mathrm{I}^{1}(\mathcal{M};X), \text{ and} \\ \mathrm{H}^{1}_{k+1}(\mathcal{M};X) &:= \mathrm{I}^{1}(\mathcal{M};\mathrm{H}^{1}_{k}(\mathcal{M};X)). \end{aligned}$

 $\cdot \ \operatorname{H}^{1}(\mathcal{M}; X) \prec_{\Sigma_{1}} \mathcal{M} \text{ and } \operatorname{H}^{1}(\mathcal{M}; X) \models I\Sigma_{1}.$

 $\cdot \ \mathrm{I}^1(\mathcal{M};X) := \{x: \ x \leq a \text{ for some } a \in \mathrm{K}^1(\mathcal{M};X)\} \prec_{\Sigma_0} \mathcal{M};$

•
$$\mathrm{H}^{1}(\mathcal{M}; X) := \bigcup_{k \in \omega} \mathrm{H}^{1}_{k}(\mathcal{M}; X)$$
, where:

 $H^1_0(\mathcal{M}; X) := I^1(\mathcal{M}; X), \text{ and}$ $H^1_{k+1}(\mathcal{M}; X) := I^1(\mathcal{M}; H^1_k(\mathcal{M}; X)).$

- \cdot H¹($\mathcal{M}; X$) $\prec_{\Sigma_1} \mathcal{M}$ and H¹($\mathcal{M}; X$) \models I Σ_1 .
- (i) We will construct some proper initial self-embedding α of H¹(M; M₀) such that Fix(α) = M₀ and α(H¹(M; M₀)) < b for some b ∈ H¹(M; M₀).

 $\cdot \ \mathrm{I}^{1}(\mathcal{M}; X) := \{ x : \ x \leq a \text{ for some } a \in \mathrm{K}^{1}(\mathcal{M}; X) \} \prec_{\Sigma_{0}} \mathcal{M};$

•
$$\mathrm{H}^{1}(\mathcal{M}; X) := \bigcup_{k \in \omega} \mathrm{H}^{1}_{k}(\mathcal{M}; X)$$
, where:

 $H^1_0(\mathcal{M}; X) := I^1(\mathcal{M}; X), \text{ and}$ $H^1_{k+1}(\mathcal{M}; X) := I^1(\mathcal{M}; H^1_k(\mathcal{M}; X)).$

- $\cdot \ \operatorname{H}^{1}(\mathcal{M}; X) \prec_{\Sigma_{1}} \mathcal{M} \text{ and } \operatorname{H}^{1}(\mathcal{M}; X) \models \mathrm{I}\Sigma_{1}.$
- (i) We will construct some proper initial self-embedding α of $\mathrm{H}^{1}(\mathcal{M}; M_{0})$ such that $\mathrm{Fix}(\alpha) = M_{0}$ and $\alpha(\mathrm{H}^{1}(\mathcal{M}; M_{0})) < b$ for some $b \in \mathrm{H}^{1}(\mathcal{M}; M_{0})$.
- (ii) By IΣ₁-version of the Friedman's Theorem, let
 β : M → H¹(M; M₀) be a proper initial embedding such that
 M₀ ⊂ Fix(β) and b ∈ β(M).

 $\cdot \ \mathrm{I}^{1}(\mathcal{M}; X) := \{ x : \ x \leq a \text{ for some } a \in \mathrm{K}^{1}(\mathcal{M}; X) \} \prec_{\Sigma_{0}} \mathcal{M};$

•
$$\mathrm{H}^{1}(\mathcal{M}; X) := \bigcup_{k \in \omega} \mathrm{H}^{1}_{k}(\mathcal{M}; X)$$
, where:

 $H^1_0(\mathcal{M}; X) := I^1(\mathcal{M}; X), \text{ and}$ $H^1_{k+1}(\mathcal{M}; X) := I^1(\mathcal{M}; H^1_k(\mathcal{M}; X)).$

- $\cdot \ \operatorname{H}^{1}(\mathcal{M}; X) \prec_{\Sigma_{1}} \mathcal{M} \text{ and } \operatorname{H}^{1}(\mathcal{M}; X) \models \mathrm{I}\Sigma_{1}.$
- (i) We will construct some proper initial self-embedding α of $\mathrm{H}^{1}(\mathcal{M}; M_{0})$ such that $\mathrm{Fix}(\alpha) = M_{0}$ and $\alpha(\mathrm{H}^{1}(\mathcal{M}; M_{0})) < b$ for some $b \in \mathrm{H}^{1}(\mathcal{M}; M_{0})$.
- (ii) By IΣ₁-version of the Friedman's Theorem, let
 β : M → H¹(M; M₀) be a proper initial embedding such that
 M₀ ⊂ Fix(β) and b ∈ β(M).
- (iii) Finally, put $j := \beta^{-1} \alpha \beta$.

• First by using strong Σ_1 -Collection in $H^1(\mathcal{M}; M_0)$, we will find some $b \in H^1(\mathcal{M}; M_0)$ such that:

 $\mathcal{M} \models [f((a)_i) \downarrow] \rightarrow [f((a)_i) \downarrow]^{< b}$, for all $f \in \mathcal{F}$ and all $i \in I$.

• First by using strong Σ_1 -Collection in $H^1(\mathcal{M}; M_0)$, we will find some $b \in H^1(\mathcal{M}; M_0)$ such that:

 $\mathcal{M} \models [f((a)_i) \downarrow] \rightarrow [f((a)_i) \downarrow]^{<b}$, for all $f \in \mathcal{F}$ and all $i \in I$.

- Back and forth: We will build finite functions $\bar{u} \mapsto \bar{v}$ of elements of $H^1(\mathcal{M}; M_0)$ such that the following properties hold:
 - · P(\bar{u}, \bar{v}, i, f) ≡ [$f(\bar{u}, (a)_i) \downarrow$] → [$f(\bar{v}, (a)_i) \downarrow$]^{<b}, for all $f \in \mathcal{F}$ and $i \in I$,

• First by using strong Σ_1 -Collection in $H^1(\mathcal{M}; M_0)$, we will find some $b \in H^1(\mathcal{M}; M_0)$ such that:

 $\mathcal{M} \models [f((a)_i) \downarrow] \rightarrow [f((a)_i) \downarrow]^{<b}$, for all $f \in \mathcal{F}$ and all $i \in I$.

• Back and forth: We will build finite functions $\bar{u} \mapsto \bar{v}$ of elements of $H^1(\mathcal{M}; M_0)$ such that the following properties hold:

•
$$P(\bar{u}, \bar{v}, i, f) \equiv [f(\bar{u}, (a)_i) \downarrow] \rightarrow [f(\bar{v}, (a)_i) \downarrow]^{, for all $f \in \mathcal{F}$ and $i \in I$,
• $Q(\bar{u}, \bar{v}, i, f) \equiv \begin{pmatrix} [f(\bar{u}, (a)_i) \downarrow] \land \\ [f(\bar{v}, (a)_i) \downarrow]^{, for all $f \in \mathcal{F}$ and all $i \in I$.$$$

Note that $Q(\bar{u}, \bar{v}, i, f)$ can be written as a Π_1 -formula; to be more exact, let:

$$\begin{cases} R := \\ \left\{ \langle k, t \rangle \in I : \mathrm{H}^{1}(\mathcal{M}; \mathcal{M}_{0}) \models \left(\begin{array}{c} \left([f(\bar{u}, (a)_{i}) \downarrow] \land [f_{t}(\bar{u}, (a)_{k}) \downarrow] \right) \rightarrow \\ f(\bar{u}, (a)_{i}) = f_{t}(\bar{u}, (a)_{k}) \end{array} \right) \right\}. \end{cases}$$

Note that $Q(\bar{u}, \bar{v}, i, f)$ can be written as a Π_1 -formula; to be more exact, let:

$$\begin{cases} R := \\ \left\{ \langle k, t \rangle \in I : \mathrm{H}^{1}(\mathcal{M}; M_{0}) \models \left(\begin{array}{c} ([f(\bar{u}, (a)_{i}) \downarrow] \land [f_{t}(\bar{u}, (a)_{k}) \downarrow]) \rightarrow \\ f(\bar{u}, (a)_{i}) = f_{t}(\bar{u}, (a)_{k}) \end{array} \right) \right\}. \\ R \text{ is } \Pi_{1} \text{-definable and so coded in } \mathrm{H}^{1}(\mathcal{M}; M_{0}). \end{cases}$$

• Forth levels (for making domain of α to be equal to $\mathrm{H}^{1}(\mathcal{M}; M_{0})$): Suppose $\bar{u} \mapsto \bar{v}$ is constructed and $m \in \mathrm{H}^{1}(\mathcal{M}; M_{0})$ is arbitrary. So w.l.o.g. we can assume that $m \leq t(\bar{u}, (a)_{i_{0}})$ for some $t \in \mathcal{F}$ and $i_{0} \in I$. • Forth levels (for making domain of α to be equal to $\mathrm{H}^{1}(\mathcal{M}; M_{0})$): Suppose $\bar{u} \mapsto \bar{v}$ is constructed and $m \in \mathrm{H}^{1}(\mathcal{M}; M_{0})$ is arbitrary. So w.l.o.g. we can assume that $m \leq t(\bar{u}, (a)_{i_{0}})$ for some $t \in \mathcal{F}$ and $i_{0} \in I$.

For every $s \in \mathrm{H}^{1}(\mathcal{M}; M_{0})$ be arbitrary and put: $p_{s}(y) :=$ $\{y \leq t(\bar{v}, (a)_{i_{0}})\} \cup \left\{ \forall i, i' < s \left(\begin{array}{c} \mathrm{P}(\bar{u}, m, \bar{v}, y, i, f) \land \\ \mathrm{Q}(\bar{u}, m, \bar{v}, y, i', f') \end{array} \right) : f, f' \in \mathcal{F} \right\}.$ • Forth levels (for making domain of α to be equal to $\mathrm{H}^{1}(\mathcal{M}; M_{0})$): Suppose $\bar{u} \mapsto \bar{v}$ is constructed and $m \in \mathrm{H}^{1}(\mathcal{M}; M_{0})$ is arbitrary. So w.l.o.g. we can assume that $m \leq t(\bar{u}, (a)_{i_{0}})$ for some $t \in \mathcal{F}$ and $i_{0} \in I$.

For every $s \in H^1(\mathcal{M}; M_0)$ be arbitrary and put: $p_s(y) :=$ $\{y \leq t(\bar{v}, (a)_{i_0})\} \cup \left\{ \forall i, i' < s \begin{pmatrix} P(\bar{u}, m, \bar{v}, y, i, f) \land \\ Q(\bar{u}, m, \bar{v}, y, i', f') \end{pmatrix} : f, f' \in \mathcal{F} \right\}.$ Our aim is to find some s > I such that the bounded Π_1 -type $p_s(y)$ is finitely satisfiable.

$$\begin{split} & \mathrm{G}(x) := \max\{s < b: \ \mathcal{M} \models \Theta(s, x, \bar{u}, m, \bar{v})\},\\ & \text{in which } \Theta(s, x, \bar{u}, m, \bar{v}) \text{ is the following } \Delta_0\text{-formula:} \end{split}$$

 $\forall r, r' < x \exists y \leq t(\bar{v}, (a)_{i_0}) \forall i, i' < s(P(\bar{u}, m, \bar{v}, y, i, f_r) \land Q(\bar{u}, m, \bar{v}, y, i', f_{r'})).$

 $G(x) := \max\{s < b : \mathcal{M} \models \Theta(s, x, \bar{u}, m, \bar{v})\},\$ in which $\Theta(s, x, \bar{u}, m, \bar{v})$ is the following Δ_0 -formula:

 $\forall r, r' < x \; \exists y \leq t(\bar{v}, (a)_{i_0}) \; \forall i, i' < s(\mathrm{P}(\bar{u}, m, \bar{v}, y, i, f_r) \land \mathrm{Q}(\bar{u}, m, \bar{v}, y, i', f_{r'})).$ Intuitively, G(x) is the largest element s less than b such that $p_s(y)$ is satisfiable for elements f_r such that r < x.

 $G(x) := \max\{s < b : \mathcal{M} \models \Theta(s, x, \bar{u}, m, \bar{v})\},\$ in which $\Theta(s, x, \bar{u}, m, \bar{v})$ is the following Δ_0 -formula:

 $\forall r, r' < x \; \exists y \leq t(\bar{v}, (a)_{i_0}) \; \forall i, i' < s(\mathrm{P}(\bar{u}, m, \bar{v}, y, i, f_r) \land \mathrm{Q}(\bar{u}, m, \bar{v}, y, i', f_{r'})).$ Intuitively, G(x) is the largest element s less than b such that $p_s(y)$ is satisfiable for elements f_r such that r < x.

Now by strongness of *I* there exists some e > I such that G(i) > I iff G(i) > e for all $i \in I$.

 $G(x) := \max\{s < b : \mathcal{M} \models \Theta(s, x, \bar{u}, m, \bar{v})\},\$ in which $\Theta(s, x, \bar{u}, m, \bar{v})$ is the following Δ_0 -formula:

 $\forall r, r' < x \; \exists y \leq t(\bar{v}, (a)_{i_0}) \; \forall i, i' < s(\mathrm{P}(\bar{u}, m, \bar{v}, y, i, f_r) \land \mathrm{Q}(\bar{u}, m, \bar{v}, y, i', f_{r'})).$ Intuitively, G(x) is the largest element s less than b such that $p_s(y)$ is satisfiable for elements f_r such that r < x.

Now by strongness of *I* there exists some e > I such that G(i) > I iff G(i) > e for all $i \in I$. We will show that $p_e(y)$ is a finitely satisfiable type.

For every finite number of elements of \mathcal{F} , say $f, f_{n_1}, ..., f_{n_k}$, there exists some s > I such that:

$$\mathcal{M} \models \exists y < t(\bar{v}, (a)_{i_0}) \forall i, i' < s \left(\mathrm{P}(\bar{u}, m, \bar{v}, y, i, f) \land \bigwedge_{w=1}^{k} \mathrm{Q}(\bar{u}, m, \bar{v}, y, i', f_{n_w}) \right).$$

For every finite number of elements of \mathcal{F} , say $f, f_{n_1}, ..., f_{n_k}$, there exists some s > I such that:

$$\mathcal{M} \models \exists y < t(\bar{v}, (a)_{i_0}) \forall i, i' < s \left(\mathrm{P}(\bar{u}, m, \bar{v}, y, i, f) \land \bigwedge_{w=1}^{k} \mathrm{Q}(\bar{u}, m, \bar{v}, y, i', f_{n_w}) \right).$$

First not that by $I\Sigma_1$ -version of Friedman's Theorem, for all s > I it holds that: $H^1(\mathcal{M}; M_0) \models \exists y < t(\bar{v}, (a)_{i_0}) \forall i < s P(\bar{u}, m, \bar{v}, y, i, f)$, for all $f \in \mathcal{F}$.

For every finite number of elements of \mathcal{F} , say $f, f_{n_1}, ..., f_{n_k}$, there exists some s > I such that:

$$\mathcal{M} \models \exists y < t(\bar{v}, (a)_{i_0}) \forall i, i' < s(P(\bar{u}, m, \bar{v}, y, i, f) \land \bigwedge_{w=1}^{k} Q(\bar{u}, m, \bar{v}, y, i', f_{n_w})).$$

First not that by $I\Sigma_1$ -version of Friedman's Theorem, for all s > I it holds that: $H^1(\mathcal{M}; \mathcal{M}_0) \models \exists y < t(\bar{v}, (a)_{i_0}) \forall i < s P(\bar{u}, m, \bar{v}, y, i, f)$, for all $f \in \mathcal{F}$. So in order to prove $p_e(y)$ is finitely satisfiable, suppose $f \in \mathcal{F}$ and $f_{n_1}, ..., f_{n_k} \in \mathcal{F}$ are given.

For every finite number of elements of \mathcal{F} , say $f, f_{n_1}, ..., f_{n_k}$, there exists some s > I such that:

$$\mathcal{M} \models \exists y < t(\bar{v}, (a)_{i_0}) \forall i, i' < s (P(\bar{u}, m, \bar{v}, y, i, f) \land \bigwedge_{w=1}^{k} Q(\bar{u}, m, \bar{v}, y, i', f_{n_w})).$$

First not that by $I\Sigma_1$ -version of Friedman's Theorem, for all s > I it holds that:

 $\mathrm{H}^{1}(\mathcal{M}; M_{0}) \models \exists y < t(\bar{v}, (a)_{i_{0}}) \forall i < s \mathrm{P}(\bar{u}, m, \bar{v}, y, i, f)$, for all $f \in \mathcal{F}$. So in order to prove $p_{e}(y)$ is finitely satisfiable, suppose $f \in \mathcal{F}$ and $f_{n_{1}}, ..., f_{n_{k}} \in \mathcal{F}$ are given. Then by repeating the above Lemma for all f_{r} s such that $r < k' := \max\{n_{k}, \lceil f \rceil\} + 1$, we will find some s > I such that the Lemma holds.

For every finite number of elements of \mathcal{F} , say $f, f_{n_1}, ..., f_{n_k}$, there exists some s > I such that:

$$\mathcal{M} \models \exists y < t(\bar{v}, (a)_{i_0}) \forall i, i' < s (P(\bar{u}, m, \bar{v}, y, i, f) \land \bigwedge_{w=1}^{k} Q(\bar{u}, m, \bar{v}, y, i', f_{n_w})).$$

First not that by $I\Sigma_1$ -version of Friedman's Theorem, for all s > I it holds that:

 $\mathrm{H}^{1}(\mathcal{M}; M_{0}) \models \exists y < t(\bar{v}, (a)_{i_{0}}) \forall i < s \mathrm{P}(\bar{u}, m, \bar{v}, y, i, f), \text{ for all } f \in \mathcal{F}.$ So in order to prove $p_{e}(y)$ is finitely satisfiable, suppose $f \in \mathcal{F}$ and $f_{n_{1}}, ..., f_{n_{k}} \in \mathcal{F}$ are given. Then by repeating the above Lemma for all f_{r} s such that $r < k' := \max\{n_{k}, \ulcorner f \urcorner\} + 1$, we will find some s > I such that the Lemma holds. So by the definition $\mathrm{G}(k') \geq s > I$.

For every finite number of elements of \mathcal{F} , say $f, f_{n_1}, ..., f_{n_k}$, there exists some s > I such that:

$$\mathcal{M} \models \exists y < t(\bar{v}, (a)_{i_0}) \forall i, i' < s (P(\bar{u}, m, \bar{v}, y, i, f) \land \bigwedge_{w=1}^{k} Q(\bar{u}, m, \bar{v}, y, i', f_{n_w})).$$

First not that by $I\Sigma_1$ -version of Friedman's Theorem, for all s > I it holds that:

 $\mathrm{H}^{1}(\mathcal{M}; M_{0}) \models \exists y < t(\bar{v}, (a)_{i_{0}}) \forall i < s \mathrm{P}(\bar{u}, m, \bar{v}, y, i, f), \text{ for all } f \in \mathcal{F}.$ So in order to prove $p_{e}(y)$ is finitely satisfiable, suppose $f \in \mathcal{F}$ and $f_{n_{1}}, ..., f_{n_{k}} \in \mathcal{F}$ are given. Then by repeating the above Lemma for all $f_{r}s$ such that $r < k' := \max\{n_{k}, \lceil f \rceil\} + 1$, we will find some s > I such that the Lemma holds. So by the definition $\mathrm{G}(k') \geq s > I$. As a result, $\mathrm{G}(k') > e$; which means the type $p_{e}(y)$ is satisfied for $f, f_{n_{1}}, ..., f_{n_{k}}$.

The standard cut

Corollary

Let $\mathcal{M} \models I\Sigma_1$ be countable and nonstandard. T.F.A.E:

- 1) \mathbb{N} is strong in \mathcal{M} .
- 2) For every small $\mathcal{M}_0 \prec_{\Sigma_1} \mathcal{M}$ there exists some proper initial self-embedding j of \mathcal{M} such that $\operatorname{Fix}(j) = M_0$.
- There exists some proper initial self-embedding j of M such that Fix(j) ⊆ I¹(M).

The standard cut

Corollary

Let $\mathcal{M} \models I\Sigma_1$ be countable and nonstandard. T.F.A.E:

- 1) \mathbb{N} is strong in \mathcal{M} .
- 2) For every small $\mathcal{M}_0 \prec_{\Sigma_1} \mathcal{M}$ there exists some proper initial self-embedding j of \mathcal{M} such that $\operatorname{Fix}(j) = M_0$.
- There exists some proper initial self-embedding j of M such that Fix(j) ⊆ I¹(M).

If $\mathcal{M} \models PA$ is recursively saturated, then the above statements are equivalent to the following:

 There exists some proper initial self-embedding j of M such that Fix(j) ⊨ BΣ₁ and it is isomorphic to no proper initial segments of M.

(3) \Rightarrow (1) : There exists some proper initial self-embedding *j* of \mathcal{M} such that $\operatorname{Fix}(j) \subseteq I^1(\mathcal{M})$.

(3) \Rightarrow (1) : There exists some proper initial self-embedding j of \mathcal{M} such that $\operatorname{Fix}(j) \subseteq I^{1}(\mathcal{M})$. First by strong Σ_{1} -collection axiom in \mathcal{M} , there exists some $b \in \mathcal{M} \setminus I^{1}(\mathcal{M})$.

(3) \Rightarrow (1) : There exists some proper initial self-embedding j of \mathcal{M} such that $\operatorname{Fix}(j) \subseteq I^1(\mathcal{M})$. First by strong Σ_1 -collection axiom in \mathcal{M} , there exists some $b \in \mathcal{M} \setminus I^1(\mathcal{M})$. Now, suppose \mathbb{N} is not strong in \mathcal{M} .

 $(3) \Rightarrow (1)$: There exists some proper initial self-embedding j of \mathcal{M} such that $\operatorname{Fix}(j) \subseteq I^1(\mathcal{M})$. First by strong Σ_1 -collection axiom in \mathcal{M} , there exists some $b \in \mathcal{M} \setminus I^1(\mathcal{M})$. Now, suppose \mathbb{N} is not strong in \mathcal{M} .

Lemma. Suppose $\mathcal{M} \models I\Sigma_1$ in which \mathbb{N} is not a strong cut, and j is a self-embedding of \mathcal{M} , then for every element $b \in \mathcal{M}$ there exists an element $c \in Fix(j)$ such that $\operatorname{Th}_{\Sigma_1}(\mathcal{M}; b) \subseteq \operatorname{Th}_{\Sigma_1}(\mathcal{M}; c)$.

 $(3) \Rightarrow (1)$: There exists some proper initial self-embedding j of \mathcal{M} such that $\operatorname{Fix}(j) \subseteq I^1(\mathcal{M})$. First by strong Σ_1 -collection axiom in \mathcal{M} , there exists some $b \in \mathcal{M} \setminus I^1(\mathcal{M})$. Now, suppose \mathbb{N} is not strong in \mathcal{M} .

Lemma. Suppose $\mathcal{M} \models I\Sigma_1$ in which \mathbb{N} is not a strong cut, and j is a self-embedding of \mathcal{M} , then for every element $b \in \mathcal{M}$ there exists an element $c \in Fix(j)$ such that $\operatorname{Th}_{\Sigma_1}(\mathcal{M}; b) \subseteq \operatorname{Th}_{\Sigma_1}(\mathcal{M}; c)$.

As a result, there exists some $c \in Fix(j)$ such that $Th_{\Sigma_1}(\mathcal{M}; b) \subseteq Th_{\Sigma_1}(\mathcal{M}; c)$. Which is a contradiction.

(2) \Rightarrow (4): Let \mathcal{M}_0 be the small recursively saturated elementary submodel of \mathcal{M} we talked about in the previous slides.

(2) \Rightarrow (4): Let \mathcal{M}_0 be the small recursively saturated elementary submodel of \mathcal{M} we talked about in the previous slides. So by (2) there exists some proper initial self-embedding j of \mathcal{M} s.t. Fix(j) = M_0 .

(2) \Rightarrow (4): Let \mathcal{M}_0 be the small recursively saturated elementary submodel of \mathcal{M} we talked about in the previous slides. So by (2) there exists some proper initial self-embedding j of \mathcal{M} s.t. Fix(j) = M_0 . Since M_0 is small, SSy(\mathcal{M}_0) \neq SSy(\mathcal{M}), so it cannot be isomorphic to any initial segments of \mathcal{M} .

(2) \Rightarrow (4): Let \mathcal{M}_0 be the small recursively saturated elementary submodel of \mathcal{M} we talked about in the previous slides. So by (2) there exists some proper initial self-embedding j of \mathcal{M} s.t. Fix $(j) = M_0$. Since M_0 is small, $SSy(\mathcal{M}_0) \neq SSy(\mathcal{M})$, so it cannot be isomorphic to any initial segments of \mathcal{M} .

(4) \Rightarrow (1): There exists some proper initial self-embedding *j* of \mathcal{M} such that $\operatorname{Fix}(j) \models B\Sigma_1$ and it is isomorphic to no proper initial segments of \mathcal{M} .

(2) \Rightarrow (4): Let \mathcal{M}_0 be the small recursively saturated elementary submodel of \mathcal{M} we talked about in the previous slides. So by (2) there exists some proper initial self-embedding j of \mathcal{M} s.t. $\operatorname{Fix}(j) = \mathcal{M}_0$. Since \mathcal{M}_0 is small, $\operatorname{SSy}(\mathcal{M}_0) \neq \operatorname{SSy}(\mathcal{M})$, so it cannot be isomorphic to any initial segments of \mathcal{M} .

(4) \Rightarrow (1): There exists some proper initial self-embedding j of \mathcal{M} such that $\operatorname{Fix}(j) \models \mathrm{B}\Sigma_1$ and it is isomorphic to no proper initial segments of \mathcal{M} . If \mathbb{N} is not strong, by the previous Lemma for every $a \in \mathcal{M}$, there exists some $b \in \operatorname{Fix}(j)$ such that $\mathbb{N} \cap a_{\mathrm{E}} = \mathbb{N} \cap b_{\mathrm{E}}$. As a result, $\operatorname{SSy}(\operatorname{Fix}(j)) = \operatorname{SSy}(\mathcal{M})$.

(2) \Rightarrow (4): Let \mathcal{M}_0 be the small recursively saturated elementary submodel of \mathcal{M} we talked about in the previous slides. So by (2) there exists some proper initial self-embedding j of \mathcal{M} s.t. $\operatorname{Fix}(j) = \mathcal{M}_0$. Since \mathcal{M}_0 is small, $\operatorname{SSy}(\mathcal{M}_0) \neq \operatorname{SSy}(\mathcal{M})$, so it cannot be isomorphic to any initial segments of \mathcal{M} .

(4) \Rightarrow (1): There exists some proper initial self-embedding j of \mathcal{M} such that $\operatorname{Fix}(j) \models \mathrm{B}\Sigma_1$ and it is isomorphic to no proper initial segments of \mathcal{M} . If \mathbb{N} is not strong, by the previous Lemma for every $a \in \mathcal{M}$, there exists some $b \in \operatorname{Fix}(j)$ such that $\mathbb{N} \cap a_{\mathrm{E}} = \mathbb{N} \cap b_{\mathrm{E}}$. As a result, $\operatorname{SSy}(\operatorname{Fix}(j)) = \operatorname{SSy}(\mathcal{M})$. Moreover, $\operatorname{Fix}(j) \preceq_{\Sigma_1} \mathcal{M}$.

(2) \Rightarrow (4): Let \mathcal{M}_0 be the small recursively saturated elementary submodel of \mathcal{M} we talked about in the previous slides. So by (2) there exists some proper initial self-embedding j of \mathcal{M} s.t. $\operatorname{Fix}(j) = \mathcal{M}_0$. Since \mathcal{M}_0 is small, $\operatorname{SSy}(\mathcal{M}_0) \neq \operatorname{SSy}(\mathcal{M})$, so it cannot be isomorphic to any initial segments of \mathcal{M} .

(4) \Rightarrow (1): There exists some proper initial self-embedding j of \mathcal{M} such that $\operatorname{Fix}(j) \models B\Sigma_1$ and it is isomorphic to no proper initial segments of \mathcal{M} . If \mathbb{N} is not strong, by the previous Lemma for every $a \in \mathcal{M}$, there exists some $b \in \operatorname{Fix}(j)$ such that $\mathbb{N} \cap a_{\mathrm{E}} = \mathbb{N} \cap b_{\mathrm{E}}$. As a result, $\operatorname{SSy}(\operatorname{Fix}(j)) = \operatorname{SSy}(\mathcal{M})$. Moreover, $\operatorname{Fix}(j) \preceq_{\Sigma_1} \mathcal{M}$. So by $I\Delta_0 + \operatorname{Exp}$ -version of the Friedman's Theorem, there exists a proper initial embedding from $\operatorname{Fix}(j)$ into \mathcal{M} , which contradicts (4).

$\mathit{I}\text{-small}$ submodels and extendability of initial self-embeddings of $\mathcal M$

Theorem (B 2022)

Suppose $\mathcal{M} \models I\Sigma_1$ is countable and nonstandard, I is a strong cut of \mathcal{M} , \mathcal{M}_0 is an I-small Σ_1 -elementary submodel of \mathcal{M} such that $\mathcal{M}_0 := \{(a)_i : i \in I\}$, and j is an initial self-embedding of \mathcal{M}_0 such that $j(I) \subseteq_e \mathcal{M}$. Then the following are equivalent:

(1) j extends to some proper initial self-embedding of \mathcal{M} .

- (2) There exists some b ∈ M such that M ⊨ j((a)_i) = (b)_{j(i)} for all i ∈ I, and
 - \cdot for every subset A of M_0 it holds that:

 $A \in \mathrm{SSy}_{I}(\mathcal{M}) \text{ iff } j(A) \in \mathrm{SSy}_{j(I)}(\mathcal{M}).$

Thank you!

Lemma

For every finite number of elements of \mathcal{F} , say $f, f_{n_1}, ..., f_{n_k}$, there exists some s > I such that:

$$\mathcal{M} \models \exists y < t(\bar{v}, (a)_{i_0}) \forall i < s (P(\bar{u}, m, \bar{v}, y, i, f) \land \bigwedge_{w=1}^k Q(\bar{u}, m, \bar{v}, y, i, f_{n_w})).$$

Proof of Lemma:

Suppose not; i.e. there exists the least $k_0 \in \omega$ for which there exist some $f \in \mathcal{F}$ and k_0 -many elements $f_{n_1}, ..., f_{n_{k_0}}$ of \mathcal{F} such that for all s > l:

(1):
$$\mathcal{M} \models \forall y < t(\bar{v}, (a)_{i_0}) \forall i < s \neg \begin{pmatrix} \mathrm{P}(\bar{u}, m, \bar{v}, y, i, f) \land \\ \bigwedge_{w=1}^{k_0} \mathrm{Q}(\bar{u}, m, \bar{v}, y, i, f_{n_w}) \end{pmatrix}.$$

Construction of α :

To make things a little more clear, by taking a look at $P(\bar{u}, m, \bar{v}, y, i, f)$ and $Q(\bar{u}, m, \bar{v}, y, i, f_{n_w})$, statement (1) states that:

for all $y < t(\bar{v}, (a)_{i_0})$ and all $\epsilon \in M_0$ if $f(\bar{u}, m, \epsilon) \downarrow \to [f(\bar{v}, y, \epsilon) \downarrow]$, then there exists some $\xi \in M_0$ and some $w = 1, ..., k_0$ s.t. $\neg Q(\bar{u}, m, \bar{v}, y, \xi, f_{n_W})$

 $[f_{n_w}(\bar{u},m,\xi)\downarrow] \wedge [f_{n_w}(\bar{v},y,\xi)\downarrow] \wedge f_{n_w}(\bar{u},m,\xi) = f_{n_w}(\bar{v},y,\xi).$

Construction of α :

To make things a little more clear, by taking a look at $P(\bar{u}, m, \bar{v}, y, i, f)$ and $Q(\bar{u}, m, \bar{v}, y, i, f_{n_w})$, statement (1) states that:

for all $y < t(\bar{v}, (a)_{i_0})$ and all $\epsilon \in M_0$ if $f(\bar{u}, m, \epsilon) \downarrow \rightarrow f(\bar{v}, y, \epsilon) \downarrow$, then there exists some $\xi \in M_0$ and some $w = 1, ..., k_0$ s.t. $\neg Q(\bar{u}, m, \bar{v}, y, \xi, f_{n_w})$

 $[f_{n_w}(\bar{u},m,\xi)\downarrow] \wedge [f_{n_w}(\bar{v},y,\xi)\downarrow] \wedge f_{n_w}(\bar{u},m,\xi) = f_{n_w}(\bar{v},y,\xi).$

By quantifying out $f_{n_w}(\bar{u}, m, \xi)$ s from the above statement, it holds that:

There exists some x s.t. for all $y < t(\bar{v}, (a)_{i_0})$ and all $\epsilon \in M_0$ if $[f(\bar{u}, m, \epsilon) \downarrow] \rightarrow [f(\bar{v}, y, \epsilon) \downarrow]$, then there exists some $\xi \in M_0$ and some $w = 1, ..., k_0$ s.t. $[f_{n_w}(\bar{u}, m, \xi) \downarrow] \land [f_{n_w}(\bar{v}, y, \xi) \downarrow] \land (x)_{< n_w, \xi >} = f_{n_w}(\bar{v}, y, \xi)$.

Then we separate those subformulas of the above formula which contain parameters \bar{u} and m. It turns out that the subsets defined in $\mathrm{H}^{1}(\mathcal{M}; I)$ with these subformulas can be coded by suitable elements of M_{0} . As a result, we will have a Σ_{1} -formula whose parameters are only \bar{v} and some elements from M_{0} , say $(a)_{i_{1}}$ and $(a)_{i_{2}}$, which serve as codes the aforementioned subsets of $\mathrm{H}^{1}(\mathcal{M}; I)$; i.e. it holds that:

There exists some x s.t. for all $y < t(\bar{v}, (a)_{i_0})$ and all $\epsilon E(a)_{i_1}$ if $[f(\bar{v}, y, \epsilon) \downarrow]$, then there exists some $\xi E(a)_{i_2}$ and some $w = 1, ..., k_0$ s.t. $[f_{n_w}(\bar{v}, y, \xi) \downarrow] \land (x)_{< n_w, \epsilon >} = f_{n_w}(\bar{v}, y, \xi).$

Let:

$$g(\overline{v}):=$$

the smallest x s.t. for all $y < t(\overline{v}, (a)_{i_0})$ and all $\epsilon E(a)_{i_1}$, if $[f(\overline{v}, y, \epsilon) \downarrow]$,
then there exists some $\xi E(a)_{i_2}$ and some $w = 1, ..., k_0$ s.t.
 $[f_{n_w}(\overline{v}, y, \xi) \downarrow] \land (x)_{< n_w, \xi >} = f_{n_w}(\overline{v}, y, \xi).$

Let:

$$g(\overline{v}):=$$
the smallest x s.t. for all $y < t(\overline{v}, (a)_{i_0})$ and all $\epsilon E(a)_{i_1}$, if $[f(\overline{v}, y, \epsilon) \downarrow]$,
then there exists some $\xi E(a)_{i_2}$ and some $w = 1, ..., k_0$ s.t.
 $[f_{n_w}(\overline{v}, y, \xi) \downarrow] \land (x)_{< n_w, \xi >} = f_{n_w}(\overline{v}, y, \xi)$.

Moreover, we define:

 $\langle o(\overline{v}, y), h(\overline{v}, y) \rangle :=$ the smallest $\langle n_w, \xi \rangle$ s.t $1 \leq w \leq k_0$ and $\xi E(a)_{i_2}$ and $\epsilon E(a)_{i_1}$, if $[f(\overline{v}, y, \epsilon) \downarrow]$, then $[f_{n_w}(\overline{v}, y, \xi) \downarrow] \land (g(\overline{v}))_{\langle n_w, \xi \rangle} = f_{n_w}(\overline{v}, y, \xi)$.

$$\mathcal{M} \models \forall y < t(\bar{v}, (a)_{i_0}) \ \forall \epsilon \mathbf{E}(a)_{i_1} \left(\begin{array}{c} [f(\bar{v}, y, \epsilon) \ \downarrow] \rightarrow \\ [< o(\bar{v}, y), h(\bar{v}, y) > \downarrow] \end{array} \right).$$

$$\mathcal{M} \models \forall y < t(\bar{v}, (a)_{i_0}) \ \forall \epsilon \mathbf{E}(a)_{i_1} \left(\begin{array}{c} [f(\bar{v}, y, \epsilon) \downarrow] \rightarrow \\ [< o(\bar{v}, y), h(\bar{v}, y) > \downarrow] \end{array} \right).$$

Then by induction hypothesis:
$$\mathcal{M} \models \forall y < t(\bar{u}, (a)_{i_0}) \ \forall \epsilon \mathbf{E}(a)_{i_1} \left(\begin{array}{c} [f(\bar{u}, y, \epsilon) \downarrow] \rightarrow \\ [< o(\bar{u}, y), h(\bar{u}, y) > \downarrow] \end{array} \right).$$

$$\mathcal{M} \models \forall y < t(\bar{v}, (a)_{i_0}) \ \forall \epsilon \mathbf{E}(a)_{i_1} \left(\begin{array}{c} [f(\bar{v}, y, \epsilon) \downarrow] \rightarrow \\ [< o(\bar{v}, y), h(\bar{v}, y) > \downarrow] \end{array} \right).$$

Then by induction hypothesis:

$$\mathcal{M} \models \forall y < t(\bar{u}, (a)_{i_0}) \ \forall \epsilon \mathbf{E}(a)_{i_1} \left(\begin{array}{c} [f(\bar{u}, y, \epsilon) \downarrow] \rightarrow \\ [< o(\bar{u}, y), h(\bar{u}, y) > \downarrow] \end{array} \right).$$

If $k_0 > 1$:

$$\mathcal{M} \models \forall y < t(\bar{v}, (a)_{i_0}) \forall i < s \neg \left(\begin{array}{c} \mathrm{P}(\bar{u}, m, \bar{v}, y, i, f') \land \\ \bigwedge_{w=2}^{k_0} \mathrm{Q}(\bar{u}, m, \bar{v}, y, i, f_{n_w}) \end{array} \right); \text{ in which } f'$$

IS:

 $f'(\diamondsuit, y) = \blacklozenge \ \Leftrightarrow \ f(\diamondsuit, y) = \blacklozenge \land [< o(\diamondsuit, y), h(\diamondsuit, y) >].$

$$\mathcal{M} \models \forall y < t(\bar{v}, (a)_{i_0}) \ \forall \epsilon \mathbf{E}(a)_{i_1} \left(\begin{array}{c} [f(\bar{v}, y, \epsilon) \downarrow] \rightarrow \\ [< o(\bar{v}, y), h(\bar{v}, y) > \downarrow] \end{array} \right).$$

Then by induction hypothesis:

$$\mathcal{M} \models \forall y < t(\bar{u}, (a)_{i_0}) \ \forall \epsilon \mathbf{E}(a)_{i_1} \left(\begin{array}{c} [f(\bar{u}, y, \epsilon) \downarrow] \rightarrow \\ [< o(\bar{u}, y), h(\bar{u}, y) > \downarrow] \end{array} \right).$$

If $k_0 > 1$:

$$\mathcal{M} \models \forall y < t(\bar{v}, (a)_{i_0}) \forall i < s \neg \left(\begin{array}{c} \mathrm{P}(\bar{u}, m, \bar{v}, y, i, f') \land \\ \bigwedge_{w=2}^{k_0} \mathrm{Q}(\bar{u}, m, \bar{v}, y, i, f_{n_w}) \end{array} \right); \text{ in which } f'$$

is:

$$f'(\diamondsuit, y) = \blacklozenge \Leftrightarrow f(\diamondsuit, y) = \blacklozenge \land [< o(\diamondsuit, y), h(\diamondsuit, y) >].$$

But this contradicts the minimality of k_0 .

If $k_0 = 1$:

• \mathcal{M} thinks that the cardinality of $A := \{h(\bar{u}, y) : \mathcal{M} \models (y < t(\bar{u}, (a)_{i_0}) \land [h(\bar{u}, y) \downarrow])\}$ is at most equal to the cardinality of $((a)_{i_1})_{E}$. If $k_0 = 1$:

- \mathcal{M} thinks that the cardinality of $A := \{h(\bar{u}, y) : \mathcal{M} \models (y < t(\bar{u}, (a)_{i_0}) \land [h(\bar{u}, y) \downarrow])\}$ is at most equal to the cardinality of $((a)_{i_1})_{E}$.
- By using the previous statements, we can build a coded 1-1 function $F \in M$ whose domain contains I and $F(I) \subset A$.

If $k_0 = 1$:

- \mathcal{M} thinks that the cardinality of $A := \{h(\bar{u}, y) : \mathcal{M} \models (y < t(\bar{u}, (a)_{i_0}) \land [h(\bar{u}, y) \downarrow])\}$ is at most equal to the cardinality of $((a)_{i_1})_{E}$.
- By using the previous statements, we can build a coded 1-1 function $F \in M$ whose domain contains I and $F(I) \subset A$.

So again a contradiction is achieved by $\Sigma_1\mbox{-Pigeonhole}$ Principle.