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I-small sets

• LetM := (M; 0, 1,+, ., <) be a model of IΣ1 (i.e. the fragment of
PA in which induction scheme is restricted to Σ1-formulas).

• Let I be a cut ofM; i.e. an initial segment with no maximum
element.

• A subset X of M is I-small if there exists some function f ∈ M
such that f ↾I is a bijection from I onto X. Equivalently, X is
I-small iff there exists some a ∈ M such that:

(1) X = {(a)i : i ∈ I}, and
(2) (a)i ̸= (a)j for all distinct i, j ∈ I.

• If I = N, then we simply use small instead of N-small.
• First appearance: Lascar 1994, Small index property.
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Outline of the talk

• Properties of I-small subsets ofM.
• Automorphism group of a countable recursively saturated
model of PA and I-small submodels.

• Initial self-embeddings of countable models of IΣ1 and I-small
submodels.
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Properties of I-small subsets of
M



Which subsets of M are I-small?

• I is I-small inM.

• If M0 := {(a)i : i ∈ I} is an I-small submodel ofM such that I is
a proper subset of M0, then M0 is neither cofinal inM (since a is
an upper bound for {(a)i : i ∈ I}), nor is an initial segment ofM:

• (Ackermann’s membership relation). There exists a ∆0-formula
xEy asserting that “the x-th bit of the binary expansion of y is 1”.
aE denotes the set of E-members of a inM.

• SSyI(M) := {X ∩ I : X is Σ1-definable inM} = {aE ∩ I : a ∈ M}.

• If I ⊂e M ⊆e N , then SSyI(M) = SSyI(N ).

A := {i ∈ I : M |= ¬ iE(a)i} ≠ ∅ is inside SSyI(M) but not in
SSyI(M0).

• By Compactness Theorem, there exists some elementary
extension N ofM in whichM is small.
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Which subsets of M are I-small?

Notation:

• Let ⟨δr : r ∈ M⟩ be a canonical enumeration of all ∆0-formulas
withinM.

• The predicate Sat∆0(x) is the truth predicate for ∆0-formulas in
M, which is ∆1-definable inM.

• For every r ∈ M, fr(x̄) = y denotes the following partial
Σ1-function inM:

y := the least element such that ∃z Sat∆0(δr(x̄, y, z)).

• The notation [fr(x̄) ↓] denotes the Σ1-formula
∃z, y Sat∆0(δr(x̄, y, z)), and [fr(x̄) ↓]<w stands for the formula
∃z, y < w Sat∆0(δr(x̄, y, z)).

• Let F be the collection of all ∅-definable partial Σ1-functions in
M.
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Which subsets of M are I-small?

• For every c ∈ M the subset of Σ1-definable elements ofM with c
as parameter, denoted by K1(M; c) is small inM:

It is easy to see that:
K1(M; c) = {fn(c) : n ∈ N andM |= [fn(c) ↓]}. Fix some

nonstandard s ∈ M, and let a ∈ M such that:

M |= ∀r < s
(

([fr(c) ↓] → (a)r = fr(c))∧
(¬[fr(c) ↓] → (a)r = 0)

)
.

• K1(M; I) is the subset of Σ1-definable elements ofM with
elements of I as parameter.
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Which subsets of M are I-small?

Suppose I is a strong cut ofM; i.e. I −→ (I)na for all n ∈ ω and all
a ∈ I.

Equivalently, I is strong iff for every function f ∈ M whose
domain contains I, there exists some e ∈ M such that
f(i) ∈ I⇔ f(i) < e for all i ∈ I.

(1) K1(M; I) is I-small.
Similar to the previous proof, we find some a ∈ M such that

K1(M; I) = {(a)i : i ∈ I}. In order to make the function (a)i an
injection, we inductively define the ∆0-function g inM such

that:
g(0) := (a)0, and

g(x+ 1) := (a)r s.t. r is the least element for which (a)r is not
between elements of {g(z) : z ≤ x}. Then let

h(x) := µr ((a)r = g(x)). Since I is strong there exists some e ∈ M
s.t. h(i) ∈ I iff h(i) < e for all i ∈ I.
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Which subsets of M are I-small?

So M0 = {g(i) : i < i0}, which is a contradiction. As a result, g ↾I is a
bijection from I onto K1(M; I).
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Which subsets of M are I-small?

(2) IfM is a countable recursively saturated model of PA, then:
2-1) (Kossak-Schmerl (1995)). There exists some small recursively

saturated elementary submodelM0 ofM which has 2ℵ0
elementary submodels.

2-2) There exists some recursively saturated I-small elementary
submodelM0 ofM. In particular,M0 is not of the form of
K(M; I).

Let S be a satisfaction class forM such thatM∗ := (M; S) is
also recursively saturate. Then putM0 := K(M∗) (for part 2-2

letM0 := K(M∗; I ∪ {a}) for some a > I).
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Which subsets of M are I-small?

(3) (Essentially Enayat). For every I-small submodelM0 ofM, it
holds that I ⊂ M0.

Suppose M0 := {(a)i : i ∈ I}. Then
X := I ∩ {⟨y, z⟩ ∈ M : M |= (a)y = z} is inside SSyI(M). Now, if
I ⊈ M0, then (I; X) |= ∃x (∀y ⟨y, x⟩ /∈ X). Since I is strong, it holds

that (I; X) |= PA∗. So let (I; X) |= x0 := µx(∀y ⟨y, x⟩ /∈ X).
Therefore, 0 ̸= x0 /∈ M0 but x0 − 1 ∈ M0.

Question.
Is the strongness of I necessary in the previous statements?
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I-small submodels and automor-
phisms ofM



Results about automorphisms ofM

Schmerl (in Kaye-Kossak-Kotlarski’s 1991 paper)
Suppose M is a countable recursively saturated model of PA, I is a
cut of M, and M0 is an I-small elementary submodel of M. Then I
is strong in M iff there exists some automorphism j of M such that
M0 = Fix(j).

Kossak-Schmerl (1995)
SupposeM is a countable recursively saturated model of PA. Then:
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Results about automorphisms ofM

Kossak-Kotlarski (1996)
SupposeM is a countable recursively saturated model of PA,M0 =

{(a)n : n ∈ N} is a small elementary submodel of M and j is an
automorphismM0. Then there exists an automorphism ĵ ofM which
extends j iff there exists some b ∈ M such that j((a)n) = (b)n for all
n ∈ N, and the same holds for j−1.

Enayat (2006)
SupposeM |= PA is countable, recursively saturated, and I is a strong
cut ofM. Moreover, letM0 be an I-small elementary submodel ofM.
Then there exists a group embedding Φ from Aut(Q, <) into Aut(M)

such that for every fixed point free automorphism j of (Q, <) it holds
that Fix(Φ(j)) = M0.
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I-small submodels and initial
self-embeddings ofM



Friedman’s Theorem

Friedman (1973)
Let M, N be countable nonstandrd models of PA. The following
statements are equivalent:

(1) SSy(M) = SSy(N ), and ThΣ1(M) ⊆ ThΣ1(N ).
(2) There is an embedding j : M → N such that j(M) ⊂e N .

There are many refinements of Friedman’s Theorem in the literature.
In particular, Ressayre proved a similar result for models of IΣ1.
Moreover, Dimitracopoulos and Paris developed a version of
Friedman’s Theorem for models of I∆0 + Exp.
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I-small submodels as fixed point

B-Enayat (2018)
SupposeM |= IΣ1 is countable and nonstandard and I is a cut ofM.
Then the following hold:

(1) I is strong inM and I ≺Σ1 M, iff there exists some proper initial
self-embedding j ofM such that Fix(j) = I.

(2) N is strong inM iff there exists some proper initial
self-embedding j ofM such that Fix(j) = K1(M).

B (2022)
Suppose M |= IΣ1 is countable and nonstandard, I is a cut, and M0
is an I-small Σ1-elementary submodel of M. Then I is strong in M
iff there exists some proper initial self-embedding j of M such that
Fix(j) = M0.
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Sketch of proof of left to right:

• I1(M; X) := {x : x ≤ a for some a ∈ K1(M; X)} ≺Σ0 M;

• H1(M; X) :=
∪
k∈ω H1

k(M; X), where:

H1
0(M; X) := I1(M; X), and

H1
k+1(M; X) := I1(M;H1

k(M; X)).

• H1(M; X) ≺Σ1 M and H1(M; X) |= IΣ1.

(i) We will construct some proper initial self-embedding α of
H1(M;M0) such that Fix(α) = M0 and α(H1(M;M0)) < b for
some b ∈ H1(M;M0).

(ii) By IΣ1-version of the Friedman’s Theorem, let
β : M ↪→ H1(M;M0) be a proper initial embedding such that
M0 ⊂ Fix(β) and b ∈ β(M).

(iii) Finally, put j := β−1αβ.
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Construction of α:

• First by using strong Σ1-Collection in H1(M;M0), we will find
some b ∈ H1(M;M0) such that:

M |= [f((a)i) ↓] → [f((a)i) ↓]<b, for all f ∈ F and all i ∈ I.

• Back and forth: We will build finite functions ū 7→ v̄ of elements
of H1(M;M0) such that the following properties hold:

• P(ū, v̄, i, f) ≡ [f(ū, (a)i) ↓] → [f(v̄, (a)i) ↓]<b, for all f ∈ F and i ∈ I,

• Q(ū, v̄, i, f) ≡

 [f(ū, (a)i) ↓]∧
[f(v̄, (a)i) ↓]<b∧
f(ū, (a)i) /∈ M0

 ⇒ f(ū, (a)i) ̸= f(v̄, (a)i), for all

f ∈ F and all i ∈ I.
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Construction of α:

Note that Q(ū, v̄, i, f) can be written as a Π1-formula; to be more
exact, let:
R :={
⟨k, t⟩ ∈ I : H1(M;M0) |=

(
([f(ū, (a)i) ↓] ∧ [ft(ū, (a)k) ↓]) →

f(ū, (a)i) = ft(ū, (a)k)

)}
.

R is Π1-definable and so coded in H1(M;M0).
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Construction of α:

• Forth levels (for making domain of α to be equal to H1(M;M0)):
Suppose ū 7→ v̄ is constructed and m ∈ H1(M;M0) is arbitrary.
So w.l.o.g. we can assume that m ≤ t(ū, (a)i0) for some t ∈ F and
i0 ∈ I.

For every s ∈ H1(M;M0) be arbitrary and put:
ps(y) :=

{y ≤ t(v̄, (a)i0)}∪
{
∀i, i′ < s

(
P(ū,m, v̄, y, i, f)∧
Q(ū,m, v̄, y, i′, f′)

)
: f, f′ ∈ F

}
.

Our aim is to find some s > I such that the bounded Π1-type
ps(y) is finitely satisfiable.
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Construction of α:

Define the following function:

G(x) := max{s < b : M |= Θ(s, x, ū,m, v̄)},
in which Θ(s, x, ū,m, v̄) is the following ∆0-formula:

∀r, r′ < x ∃y ≤ t(v̄, (a)i0) ∀i, i′ < s(P(ū,m, v̄, y, i, fr) ∧ Q(ū,m, v̄, y, i′, fr′)).

Intuitively, G(x) is the largest element s less than b such that ps(y) is
satisfiable for elements fr such that r < x.

Now by strongness of I there exists some e > I such that G(i) > I iff
G(i) > e for all i ∈ I. We will show that pe(y) is a finitely satisfiable
type.
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in which Θ(s, x, ū,m, v̄) is the following ∆0-formula:

∀r, r′ < x ∃y ≤ t(v̄, (a)i0) ∀i, i′ < s(P(ū,m, v̄, y, i, fr) ∧ Q(ū,m, v̄, y, i′, fr′)).
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Construction of α:

Lemma
For every finite number of elements of F , say f, fn1 , ..., fnk , there exists
some s > I such that:

M |= ∃y < t(v̄, (a)i0)∀i, i′ < s (P(ū,m, v̄, y, i, f) ∧
k∧

w=1
Q(ū,m, v̄, y, i′, fnw)).

First not that by IΣ1-version of Friedman’s Theorem, for all s > I it
holds that:
H1(M;M0) |= ∃y < t(v̄, (a)i0) ∀i < s P(ū,m, v̄, y, i, f), for all f ∈ F .
So in order to prove pe(y) is finitely satisfiable, suppose f ∈ F and
fn1 , ..., fnk ∈ F are given. Then by repeating the above Lemma for all
frs such that r < k′ := max{nk, ⌜f⌝}+ 1, we will find some s > I such
that the Lemma holds. So by the definition G(k′) ≥ s > I. As a result,
G(k′) > e; which means the type pe(y) is satisfied for f, fn1 , ..., fnk .
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k∧

w=1
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The standard cut

Corollary
LetM |= IΣ1 be countable and nonstandard. T.F.A.E:

1) N is strong inM.
2) For every smallM0 ≺Σ1 M there exists some proper initial
self-embedding j ofM such that Fix(j) = M0.

3) There exists some proper initial self-embedding j ofM such
that Fix(j) ⊆ I1(M).

If M |= PA is recursively saturated, then the above statements are
equivalent to the following:

4) There exists some proper initial self-embedding j ofM such
that Fix(j) |= BΣ1 and it is isomorphic to no proper initial
segments ofM.
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The standard cut

Proof.
(3) ⇒ (1) : There exists some proper initial self-embedding j of M
such that Fix(j) ⊆ I1(M).

First by strong Σ1-collection axiom in M,
there exists some b ∈ M\I1(M). Now, suppose N is not strong inM.

Lemma. Suppose M |= IΣ1 in which N is not a strong cut, and j is a
self-embedding of M, then for every element b ∈ M there exists an
element c ∈ Fix(j) such that ThΣ1(M;b) ⊆ ThΣ1(M; c).

As a result, there exists some c ∈ Fix(j) such thatThΣ1(M;b) ⊆ ThΣ1(M; c).
Which is a contradiction.
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The standard cut

Proof.
(2) ⇒ (4): LetM0 be the small recursively saturated elementary sub-
model of M we talked about in the previous slides.

So by (2) there
exists some proper initial self-embedding j of M s.t. Fix(j) = M0.
Since M0 is small, SSy(M0) ̸= SSy(M), so it cannot be isomorphic to
any initial segments ofM.
(4) ⇒ (1): There exists some proper initial self-embedding j of M
such that Fix(j) |= BΣ1 and it is isomorphic to no proper initial seg-
ments of M. If N is not strong, by the previous Lemma for every
a ∈ M, there exists some b ∈ Fix(j) such that N ∩ aE = N ∩ bE.
As a result, SSy(Fix(j)) = SSy(M). Moreover, Fix(j) ⪯Σ1 M. So by
I∆0 + Exp-version of the Friedman’s Theorem, there exists a proper
initial embedding from Fix(j) intoM, which contradicts (4).
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I-small submodels and extendability of initial self-embeddings
ofM

Theorem (B 2022)
Suppose M |= IΣ1 is countable and nonstandard, I is a strong cut
of M, M0 is an I-small Σ1-elementary submodel of M such that
M0 := {(a)i : i ∈ I}, and j is an initial self-embedding ofM0 such that
j(I) ⊆e M. Then the following are equivalent:

(1) j extends to some proper initial self-embedding ofM.
(2) • There exists some b ∈ M such thatM |= j((a)i) = (b)j(i) for all i ∈ I,

and
• for every subset A of M0 it holds that:

A ∈ SSyI(M) iff j(A) ∈ SSyj(I)(M).
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Thank you!
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Construction of α:

Lemma
For every finite number of elements of F , say f, fn1 , ..., fnk , there exists
some s > I such that:

M |= ∃y < t(v̄, (a)i0)∀i < s (P(ū,m, v̄, y, i, f) ∧
k∧

w=1
Q(ū,m, v̄, y, i, fnw)).

Proof of Lemma:

Suppose not; i.e. there exists the least k0 ∈ ω for which there exist
some f ∈ F and k0-many elements fn1 , ..., fnk0 of F such that for all
s > I:

(1) : M |= ∀y < t(v̄, (a)i0)∀i < s ¬
(

P(ū,m, v̄, y, i, f) ∧∧k0
w=1 Q(ū,m, v̄, y, i, fnw)

)
.
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Construction of α:

To make things a little more clear, by taking a look at P(ū,m, v̄, y, i, f)
and Q(ū,m, v̄, y, i, fnw), statement (1) states that:

for all y < t(v̄, (a)i0) and all ϵ ∈ M0 if

P(ū,m,v̄,y,ϵ,f)︷ ︸︸ ︷
[f(ū,m, ϵ) ↓] → [f(v̄, y, ϵ) ↓], then

there exists some ξ ∈ M0 and some w = 1, ..., k0 s.t.
¬Q(ū,m,v̄,y,ξ,fnw )︷ ︸︸ ︷

[fnw(ū,m, ξ) ↓] ∧ [fnw(v̄, y, ξ) ↓] ∧ fnw(ū,m, ξ) = fnw(v̄, y, ξ).

By quantifying out fnw(ū,m, ξ)s from the above statement, it holds
that:

There exists some x s.t. for all y < t(v̄, (a)i0) and all ϵ ∈ M0 if
[f(ū,m, ϵ) ↓] → [f(v̄, y, ϵ) ↓], then there exists some ξ ∈ M0 and some
w = 1, ..., k0 s.t. [fnw(ū,m, ξ) ↓] ∧ [fnw(v̄, y, ξ) ↓] ∧ (x)

<nw,ξ>
= fnw(v̄, y, ξ).
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Construction of α:

Then we separate those subformulas of the above formula which
contain parameters ū and m. It turns out that the subsets defined in
H1(M; I) with these subformulas can be coded by suitable elements
of M0. As a result, we will have a Σ1-formula whose parameters are
only v̄ and some elements from M0, say (a)i1 and (a)i2 , which serve as
codes the aforementioned subsets of H1(M; I) ; i.e. it holds that:

There exists some x s.t. for all y < t(v̄, (a)i0) and all ϵE(a)i1 if
[f(v̄, y, ϵ) ↓], then there exists some ξE(a)i2 and some w = 1, ..., k0 s.t.

[fnw(v̄, y, ξ) ↓] ∧ (x)
<nw,ξ>

= fnw(v̄, y, ξ).
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Construction of α:

Let:

g(v̄):=
the smallest x s.t. for all y < t(v̄, (a)i0) and all ϵE(a)i1 , if [f(v̄, y, ϵ) ↓],

then there exists some ξE(a)i2 and some w = 1, ..., k0 s.t.
[fnw(v̄, y, ξ) ↓] ∧ (x)

<nw,ξ>
= fnw(v̄, y, ξ).

Moreover, we define:

< o(v̄, y),h(v̄, y) >:=
the smallest < nw, ξ > s.t 1 ≤ w ≤ k0 and ξE(a)i2 and ϵE(a)i1 , if

[f(v̄, y, ϵ) ↓], then [fnw(v̄, y, ξ) ↓] ∧ (g(v̄))<nw,ξ> = fnw(v̄, y, ξ).
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Construction of α:

So it holds that:

M |= ∀y < t(v̄, (a)i0) ∀ϵE(a)i1

(
[f(v̄, y, ϵ) ↓] →

[< o(v̄, y),h(v̄, y) >↓]

)
.

Then by induction hypothesis:

M |= ∀y < t(ū, (a)i0) ∀ϵE(a)i1

(
[f(ū, y, ϵ) ↓] →

[< o(ū, y),h(ū, y) >↓]

)
.

If k0 > 1 :

M |= ∀y < t(v̄, (a)i0)∀i < s ¬
(

P(ū,m, v̄, y, i, f′) ∧∧k0
w=2 Q(ū,m, v̄, y, i, fnw)

)
; in which f′

is:
f′(♢, y) = ♦ ⇔ f(♢, y) = ♦ ∧ [< o(♢, y),h(♢, y) >].

But this contradicts the minimality of k0.

34



Construction of α:

So it holds that:

M |= ∀y < t(v̄, (a)i0) ∀ϵE(a)i1

(
[f(v̄, y, ϵ) ↓] →

[< o(v̄, y),h(v̄, y) >↓]

)
.

Then by induction hypothesis:
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[f(ū, y, ϵ) ↓] →
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Construction of α:

If k0 = 1:

• M thinks that the cardinality of
A := {h(ū, y) : M |= (y < t(ū, (a)i0) ∧ [h(ū, y) ↓])} is at most
equal to the cardinality of ((a)i1)E.

• By using the previous statements, we can build a coded 1-1
function F ∈ M whose domain contains I and F(I) ⊂ A.

So again a contradiction is achieved by Σ1-Pigeonhole Principle.
□
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