
Subforcings of the Tree-Prikry Forcing

Tom Benhamou

Joint work with Moti Gitik and Yair Hayut

Department of Mathematics
Tel Aviv University

March 5, 2022

Benhamou, T. CUNY Set Theory Seminar, Fall 2021 March 5, 2022 1 / 27



Outline

1 Introduction
Background and Motivation
Basic definitions

2 Subforcings of the Tree-Prikry forcing
Known Results
Under very large cardinals
Under Minimal large cardinal assumption
Masterable forcing
Cardinality greater than κ

3 References

Benhamou, T. CUNY Set Theory Seminar, Fall 2021 March 5, 2022 2 / 27



Outline

1 Introduction
Background and Motivation
Basic definitions

2 Subforcings of the Tree-Prikry forcing
Known Results
Under very large cardinals
Under Minimal large cardinal assumption
Masterable forcing
Cardinality greater than κ

3 References

Benhamou, T. CUNY Set Theory Seminar, Fall 2021 March 5, 2022 3 / 27



Background & Motivation

In this talk we will consider the possibility of projecting the Tree-Prikry forcing
onto some distributive forcing notions. As there are known techniques of iterating
Prikry-Type forcing on different cardinals, the existence of such embedding allows
one to iterate distributive forcing notions on different cardinals, see [7, Section
6.4].
Subforcings of the vanilla Prikry forcing were studied by Gitik, Koepke and
Kanovei:

Theorem 1 (Gitik, Kanovei, Koepke, 2010 [10])

Let U be a normal measure over κ and G ⊆ P(U) be a V -generic filter, let
V ( M ⊆ V [G ] be an intermediate ZFC model definable in V [G ], then
M = V [G ′] where G ′ ⊆ P(U) is another V -generic filter.

Namely, in the case of normal ultrafilter U, the only projections and subforcings
of the Prikry forcing are essentially the Prikry forcing with U. This situation
changes drastically when considering the Prikry forcing suitable for non-normal
ultrafilters: the Tree-Prikry forcing. We wish to examine the different possibilities
under several large cardinal assumptions.
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Projection of forcings

Let P,Q be forcing notions, recall that π : P→ Q is a called a projection if
(Israeli-style forcing):

1 π is order preserving.

2 ∀p ∈ P∀π(p) ≤ q∃p′ ≥ p.π(p′) ≥ q.

3 Im(π) is dense in P.

If a forcing Q is a projection of a forcing P, then it generates intermediate models.

Proposition 1

Let P,Q be a forcing notion, denote by B(Q) the complete boolean algebra of
regular open sets of P. There is a projection π : P→ B(Q) iff there is a P-name
H∼ such that for every V -generic filter H for Q there is a V -generic filter G for P
such that (H∼)G = H.

For more information about projections, embeddings and boolean algebras see [12]
or [1].
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The Tree-Prikry forcing

Let ~U = 〈Ua | a ∈ [κ]<ω〉 be a tree of κ-complete ultrafilters over κ.

Definition 2 (Tree Prikry Forcing-PT ( ~U))

Conditions of PT ( ~U) are pairs 〈t,T 〉, where T is a subtree of [κ]<ω with stem t,

which is ~U-splitting:

∀s ∈ T .s ≥ t → SuccT (s) := {α < κ | saα ∈ T} ∈ Us

The order is defined 〈t,T 〉 ≤ 〈s,S〉 iff S ⊆ T (hence s ∈ T ) and if we add that
t = s then we denote it 〈t,T 〉 ≤∗ 〈s,S〉.

Some facts about P (For proofs see [3]):
1 κ-centered (hence κ+-cc), does not add bounded subsets to κ (Prikry

property and ≤∗-closure).

2 It satisfies the strong Prikry property:for any 〈t,T 〉 ∈ PT ( ~U), and and d.o.

set D ⊆ PT ( ~U), there is 〈t,T 〉 ≤∗ 〈t,T ∗〉 and n < ω such that for any
t ′ ∈ Levn(T ∗), 〈tat ′, (T ∗)′t〉 ∈ D.

3 Mathias-Like criterion for Tree-Prikry generic sequences.
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Intermediate Models of Tree Prikry forcing

It turns out (not surprisingly) that the structure of the intermediate models of the

tree Prikry forcing depends on the combinatorical properties of the measures in ~U.
On extreme is the situation where the are no intermediate models at all:

Theorem 3 (Koepke, Räsch, Schlicht (2013)[11])

Assume that ~U = 〈Uα | α < κ〉 is a sequence of distinct normal measures. Then

for every V -generic filter G ⊆ PT ( ~U)a, there is no proper intermediate model
V ( M ( V [G ].

aWe view ~U as a tree by defining for every a ∈ [κ]<ω , Ua = Umax(a).

The other extreme would be a situation where the Tree-Prikry forcing have a large
variety of intermediate models in terms of the forcing which generates them. If
such forcing does not add new ω-sequences (namely, σ-distributive), then is should
be at least κ-distributive, as PT (U) does not add fresh sets to ordinals of cofinality
less than κ.Also it should be κ-centered and of cardinality at most 2κ. In the next
slide, we will see that if we assume larger cardinals, some variety is consistent.
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Assuming κ is κ-compact

Definition 4 (κ-compact Cardinal)

κ is called a κ-compact cardinal if every κ-complete filter over κ can be extended
to a κ-complete ultrafilter over κ

The ability to extend κ-complete filters is deeply connected to our problem:

Theorem 5 (Gitik, Hayut, B. 2021[6])

Let P be a σ-distributive forcing of size κ. The following are equivalent:

There is a tree ~U of κ-complete ultrafilters and a projection
π : PT (~U)→ B(P).

For every p ∈ P, Dp(P) can be extended to a κ-complete ultrafilter Up.
Where Dp(P) is the filter of open subsets of P which are dense above p.

Corollary 6

If κ is κ-compact, every κ-distributive forcing of cardinality κ is a projection of a
Tree-Prikry forcing.
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Lower bound for all the κ-distributive

The assumption that κ is κ-compact is quit strong:

Theorem 7 (Gitik [9])

If κ is κ-compact then there is an inner model with a Woodin cardinal.

Question
Can the assumption that κ is κ-compact be relaxed?

Since we only wish to extend a relatively easily definable filter Dp(P), it suffices to
assume that κ is 1-extendable.However, we cannot hope to improve this bound
much further. In [6], we found that there is a non trivial lower bound:

Theorem 8 (Gitik, Hayut, B.)

Let Q be the forcing shooting a club through the singulars below κa. Assume that
there is a κ-complete ultrafilter extending the filter D(Q) of dense open subset of
Q. Then either there is an inner model for ∃λ, o(λ) = λ++, or oK(κ) ≥ κ+.

aThus Making κ not Mahlo. It is < κ-strategically closed.
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From minimal large cardinal assumption

Obviously, the minimal relevant large cardinal assumption in this situation is a
measurable cardinal. Is there a non-trivial subforcing for the Tree-Prikry forcing if
we only assume the existence of a measurable cardinal?

Theorem 9 (Gitik, B. (2021)[5])

Assume GCH and let κ be a measurable cardinal. There is a cofinality preserving
forcing extension V ⊆ N and an ultrefilter W ∈ N such that forcing with PT (W )a

over N adds a κ-Cohen real.

aWe view ~U as a tree by defining for every a ∈ [κ]<ω , Ua = W .

Proof.
The model N is obtained by forcing the Easton support iteration
〈Pα,Q∼β | α ≤ κ, β < κ〉: Each Q∼β is trivial, unless β is inaccessible. For
inaccessible β, Q∼β is the lottery sum of the trivial forcing {0} and the β-Cohen
real forcing Add(β, 1). Let Gκ ⊆ Pκ be V -generic and N := V [Gκ]. Let U ∈ V be
a normal measure over κ and j1 := jU : V → MU be the corresponding elementary
embedding, denote j1(κ) = κ1. Let us extend jU to j∗1 : V [Gκ]→ MU [H].
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Note that j1(Pκ) = Pκ1 is an iteration defined similar to Pκ inside MU , it remains
to find a generic for P[κ,κ1). Since κ is inaccessible in MU , the forcing Q∼κ is a
lottery sum, and by choosing {0}, we gain sufficient closure to construct a
MU -generic Gκ1 ∈ V [Gκ]. The ultrafilter {X ∈ PN(κ) | κ ∈ j∗1 (X )} concentrates
on {α < κ | {0} was forced at α}. Back in V , consider the second iteration by U
jj1(U) : MU → Mj1(U), and denote by j2 = jj1(U) ◦ j1, κ2 = j2(κ). Note that from the
point of view of V , there are still only κ+ many dense subsets of Pκ2 in Mj1(U),
and the forcing P[κ1,κ2) is κ+ closed. Hence a generic filter can be constructed to
extend j2 to j∗2 , only this time we can choose the Cohen part in the lottery of Q∼κ1 .
Let

W = {X ∈ PN(κ) | κ1 ∈ j∗2 (X )}

Clearly W concentrates on the set of points which the Cohen part was forced. For
each α ∈ Y , let fα be the Cohen function added by Gκ. Force PT (W ) over N and
let {cn | n < ω} be the N−generic Prikry sequence. There is n0 < ω such that for
every n ≥ n0, cn ∈ Y and therefore fcn is defined. It remains to see that

f = fcn0 ∪ ∪n0<n<ωfcn � [cn−1, cn) ∈ N[G ]

is N-generic for Add(κ, 1).
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Minimal assumption

Lemma 10

Every κ−strategically closed forcing of cardinality κ is a projection of Add(κ, 1).

Corollary 11

Assume that κ is measurable. It is consistent that every κ-strategically closed
forcing of cardinality κ is a projection of a Tree-Prikry forcing.

As we have seen, moving to the class of < κ-strategically closed forcing already
require larger cardinals. Nonetheless, D. Velleman proved [13] that if there is a
Jensen square to κ, then every < κ−strategically closed forcing is actually
κ−strategically closed forcing. This provides a “maximal” forcing notion to the
class of < κ-strategically closed forcing: The forcing which adds a Jensen square.

Question
Under the minimal assumption that κ is measurable. What is the class of forcing
P which can be intermediate to a Tree-Prikry extension?
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Masterable forcing

The technique of the theorem proven for Add(κ, 1) can be modified to abstract
settings. The class of Masterable forcing, denoted by Nκ, is defined by
properties for which the argument given for Cohen forcing generalizes.

Definition 12

A forcing notion Q is called masterable if:

1 Q is a κ-distributive forcing of size κ,
2 there is a forcing notion R∼ ∈ VQ such that:

(2a) In V Q∗ R∼, there is an elementary embedding j : V Q → M with crit(j) = κ.
(2b) Q ∗ R∼ contains a dense subset of size ≤ κ and Q ∗ R∼ is <κ-strategically closed.

For example, Add(κ, 1) is masterable by taking R∼ as the trivial forcing.
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Masterable forcing

Theorem 13
Assume GCH and let κ be a measurable cardinal.
Then there is a cofinality preserving forcing extension in which for any Q ∈ Nκ, Q
is a projection of the Tree-Prikry forcing.

Sketch of the Proof.

Prepare the universe V by forcing the Easton support iteration
〈Pα,Q∼β | α ≤ κ, β < κ〉 where Q∼α is either the trivial forcing, if α is not
inaccessible, or the lottery sum of all <α-strategically closed forcing notions
of size α.
In V Pκ we can lift an embedding j1 : V → M of a normal ultrafilter to
j∗1 : V [G ]→ M[G1] by choosing the trivial forcing at κ.

Given Q ∈ NV [G ]
κ , by elementarity j∗1 (Q) ∈ NM[G1]

κ1 , is also masterable where
κ1 = j1(κ).
By condition (2) of masterable, there is a further forcing R∼ with properties
(2a), (2b).
By (2b), the forcing is < κ1−str.cl., hence by GCH, in V [G ] we can
construct an M[G1]-generic filter H := Gj∗1 (Q) ∗ GR∼.
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Masterable forcing

By (2a), in M[G1][H] there is a generic elementary embedding
k : M[G1][Gj∗1 (Q)]→ N0[k(Gj∗1 (Q))] and Gj∗1 (Q) = k ′′Gj∗1 (Q) ⊆ k(Gj∗1 (Q)).

k(j∗1 (Q)) is a k(κ1)-distributive forcing notion on k(κ1) over a ground model
N0. Hence Gj∗1 (Q) ∈ N0. Define in
D0 = {p ∈ k(j∗1 (Q)) | p⊥Gj∗1 (Q) ∨ ∀q ∈ Gj∗1 (Q).q ≥ p}. By density, there is
p ≤ m ∈ k(Gj∗1 (Q)) for every p ∈ Gj∗1 (Q). Namely, m is a master condition.

The ultrafilter U := {X ⊆ Q | m ∈ k(j∗1 (X ))} is κ−complete (Since
crit(k ◦ j∗1 ) = κ) and extends D(Q):If D ⊆ Q is d.o. then there is
p ∈ j∗1 (D) ∩ Gj∗1 (Q) hence p = k(p) ∈ k(j∗1 (D)). Since D is open and p ≤ m,
m ∈ k(j∗1 (D)).

The following facts can be found in [6]:
1 Nκ is closed under complete subforcings.
2 proven to consistently include forcing notions Nκ which are not projections of

the Cohen forcing. For example, the forcing which shoots a club through a
stationary set S ⊆ κ that contains all the singular cardinals and is of measure
one in a normal measure over κ.

3 It is consistent that there are forcing notions which are κ-distributive but not
<κ−strategically closed nor masterable.
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Adding more than one Cohen and non-Galvin Ultrafilters

What limitations do we have on projections of the Tree-Prikry forcing?In terms of
cardinality it should be at most 2κ. Also, κ-centered is essential:
If P = ∪i<κAi such that Ai is a directed set, and π : P→ Q is a projection, then
Q = ∪π′′Ai and each π′′Ai is a directed set.

Corollary 14

Add(κ+, 1) (Nor B(Add(κ+, 1))) is not a projection of the Tree-Prikry forcing.

The forcing Add(κ, κ+) on the other hand is κ-centered.
In a very recent joint result with Gitik we think that we can actually get the
consistency of Add(κ, κ+) being a subforcing of the Tree-Prikry forcing (starting
from a measurable). This is done using a non-Galvin ultrafilter.

Definition 15
A κ-complete ultrafilter U is called a Galvin-ultrafilter, if for every
〈Xi | i < κ+〉 ∈ [U]κ

+

there is I ∈ [κ+]κ such that ∩i∈IXi ∈ U.

Galvin proved that normal ultrafilters are Galvin [2].
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For adding κ+-many Cohens to κ, it is necessary to force with a non-Galvin
ultrafilter:

Proposition 2

Let U is a Galvin ultrafilter and G ⊆ PT (U) be V -generic. Then for any subset
A ∈ V [G ], A ⊆ V , |A| = κ+, there is A′ ∈ V such that |A′| = κ and A′ ⊆ A.

Proof.

Suppose otherwise, and let {aα | α < κ+} be an enumerating A and
{a∼α | α < κ+}. One one hand, translating the assumption on A, there is no
B ∈ V such that |B| = κ and B ⊆ A. On the other hand, for every α < κ+ find a
condition pα = 〈tα,Aα〉 ∈ PT (U)a such that pα decides the value a∼α.Then there
is X ⊆ κ+ and t∗ such that |X | = κ+ and for every α ∈ X , tα = t∗. Consider
〈Aα | α ∈ X 〉 and apply the Galvin property to find Y ⊆ X such that |Y | = κ and
A∗ := ∩y∈YAy ∈ U. Then 〈t∗,A∗〉 decides κ-many of the values a∼α,
contradiction.

aConditions in the forcing PT (U), when U is a single κ-complete ultrafilter, are essentially of
the form 〈t,A〉 where A ∈ U is a single set.

Actually the other direction is also true, that if for every A ⊆∈ V [G ] such that
|A| = κ+ there is B ∈ V , |B| = κ and B ⊆ A, then U must be Galvin [8],[4].
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Corollary 16

If U is Galvin then U does not add a generic for Add(κ, κ+).

Proof.

Indeed if f : κ+ → 2 is a Add(κ, κ+)-generic, then by density argument the set
A = {α < κ+ | f (α) = 1} has no V -subset of cardinality κ.

Conjecture 1

Starting from a measurable cardinal, it is concictent that there is a non-Galvin
ultrafilter U such that forcing PT (U) adds a generic for Add(κ, κ+).
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Finish line

Thank you for your attention!
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