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Background

Consider the following two well known results:

Theorem 1
1 (folklore [12]) Any intermediate model of a Cohen generic extension is a

Cohen generic extension.

2 (D.Maharam [14]) Any intermediate model of a random real generic
extension is a random real generic extension.

This phenomena of the structure of intermediate models holds also for the
standard Prikry forcing:

Theorem 2 (Gitik, Kanovei, Koepke, 2010 [10])

Let U be a normal measure over κ and G ⊆ P(U) be a V -generic filter producing
the Prikry sequence CG := {κn | n < ω}. Then for every A ∈ V [G ] there is
C ⊆ CG , such that V [A] = V [C ].
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Background

Corollary 3

In the settings of the last theorem, let V ( M ⊆ V [G ] be an intermediate ZFC
model definable in V [G ], then M = V [G ′] where G ′ ⊆ P(U) is another V -generic
filter.

Proof.

Every such model is of the form M = V [A] for some set A ∈ V [G ]. By theorem 2,
M = V [C ] for some subsequence C of the Prikry sequence. By the Mathias
criteria[15], C is itself a Prikry sequence.

The goal of this talk is to investigate the structure of more complex Prikry-Type
forcings: the Magidor-Radin and the Tree-Prikry forcings. More accurately, we
would like to tackle the following question:

Question

What forcings P, have (consistently) generic extension intermediate to a generic
extension by Magidor-Radin forcing or the Tree-Prikry forcing?.
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Magidor-Radin Forcing

Menachem Magidor introduced [13] his forcing as an example of a forcing which
preserves cardinals and changes the cofinality of some measurable cardinal κ of
high Mitchell order to be uncountable by adding a club of low order type to κ.

A
closely related forcing is the Radin forcing[17], which also adds a club similar to
the Magidor club, but can also keep κ regular or even measurable. Nowadays,
there are several variations of Magidor and Magidor-Radin forcings in use.
The following maximality result for Magidor’s original variation of Magidor forcing
is due to Fuchs[7]:

Theorem 4 (Fuchs, G. 2014)

Let c , d be two Magidor generic sequences over V . If d ∈ V [c] then
Im(d) \ Im(c) is finite.

In other words, the only situation when two Magidor generic extensions are
intermediate to one another, is if the generic clubs associated are almost included.

Our forcing notations are in Israeli style i.e. p ≤ q means that q is stronger.
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Magidor Forcing

We follow the variation of Magidor forcing described in [9] due to Mitchell[16].

Let ~U = 〈U(α, β) | α ≤ κ , β < o
~U(α)〉 be a coherent sequence:

Definition 5

The conditions of M[ ~U] are of the form 〈〈α1,A1〉, ..., 〈αn,An〉, 〈κ,A〉〉 where:

1 α1 < ... < αn is an increasing sequence below κ.

2 Ai = ∅ unless o
~U(αi ) > 0 in which case, Ai ∈ ∩β<o~U (αi )

U(αi , β) is a measure

one set with respect to all the measures given on αi .
The order is define as follows,
p := 〈〈α1,A1〉, ..., 〈αn,An〉, 〈κ,A〉〉 ≤ q := 〈〈β1,B1〉, ..., 〈βm,Bm〉, 〈κ,B〉〉 iff:

∃1 ≤ i1 < ... < in ≤ m such that for every 1 ≤ j ≤ m:
1 If ∃1 ≤ r ≤ n such that ir = j then βir = αr and Bir ⊆ Ar .
2 Otherwise let 1 ≤ r ≤ n + 1 such that ir−1 < j < ir then:
βj ∈ Ar , Bj ⊆ Ar ∩ βj

If p ≤ q and in addition n = m, denote it by p ≤∗ q.
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Properties of Magidor forcing

The major advantage of this variation of the forcing is that we do not have to
specify how the measure of higher ordinals reflects to measure on lower ordinals.
This is inherent to the definition of coherent sequence.
Facts about M[ ~U]: Let G ⊆M[ ~U] be a V -generic filter.

1 CG = {ν | ∃ A∃p ∈ G s.t. 〈ν,A〉 ∈ p} is a club. otp(CG ) = min{κ, ωo
~U (κ)}.

2 If α ∈ CG , o
~U(α) = 0 iff α is successor in CG .

3 Satisfies k+-c.c. (even (κ, κ)-centered) and the Prikry condition.
4 If δ ∈ Lim(CG )∪{κ} and A ∈ ∩ξ<o~U (δ)U(δ, ξ), ∃δ′ < δ such (δ′, δ)∩CG ⊆ A.

5 For ~U-measurable λ, M[ ~U] naturally factors to the a Magidor forcing up to λ,

denoted by M[ ~U] � λ and above λ, denoted by M[ ~U] � (λ, κ). The first part
is of cardinality 2λ and the second has ≤∗-closure degree much above 2λ.

6 If A ⊆ Vα, then A ∈ V [CG ∩ λ], where λ = max(Lim(CG ) ∩ α + 1).

7 M[ ~U] preserves cardinals.
8 For every V -regular cardinal α, if cf V [G ](α) < α then α ∈ Lim(CG ).

9 If α ∈ CG ∪ {κ}, 0 < o
~U(α) and cf (o

~U(α)) < α+ then cf V [G ](α) < α.

10 If α ∈ CG ∪ {κ} and cf (o
~U(α)) ≥ α+ then α is regular in V [G ].
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denoted by M[ ~U] � λ and above λ, denoted by M[ ~U] � (λ, κ). The first part
is of cardinality 2λ and the second has ≤∗-closure degree much above 2λ.

6 If A ⊆ Vα, then A ∈ V [CG ∩ λ], where λ = max(Lim(CG ) ∩ α + 1).

7 M[ ~U] preserves cardinals.
8 For every V -regular cardinal α, if cf V [G ](α) < α then α ∈ Lim(CG ).
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Examples of Intermediate Models I

Intermediate Models of a generic extension by M[ ~U] are not necessarily generic

extensions of M[ ~U]:

Example 6

Assume that o
~U(κ) = 2. Then κ carries two measures: U(κ, 0),U(κ, 1). This

means that typically otp(CG ) = ω2, denote it by CG = {CG (i) | i < ω2}. For
example the intermediate model V [{CG (n) | n < ω}], is a Prikry generic extension.

Example 7

Assume that o
~U(κ) = ω, thus otp(CG ) = ωω. Consider the intermediate

extension V [{CG (ωn) | n < ω}] it is a diagonal Prikry generic extension for the
sequence of measures 〈U(κ, n) | n < ω〉.
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Examples of Intermediate Models II

Example 8

Let suppose that o
~U(δ0) = 1 and o

~U(κ) = δ0. There is G ⊆M[ ~U] which produces
a Magidor sequence {CG (α) | α < δ0} such that CG (ω) = δ0. The first Prikry
sequence {CG (n) | n < ω} ∈ V [G ] is a cofinal sequence in CG (ω) = δ0. Consider
the sequence C = {CG (CG (n)) | n < ω}. It is unbounded in κ and witnesses that
κ changes cofinality. This example is different from the previous ones as it cannot
be obtain as a diagonal Prikry-type forcing. This is since the indices of C inside
CG are I := {CG (n) | n < ω} /∈ V .

Example 9

Suppose o
~U(κ) = κ, then CG = {CG (α) | α < κ}. In V [G ], define α0 = CG (0),

and αn+1 = CG (αn). Since {α < κ | o ~U(α) < α} is measure-one, {αn | n < ω} is
a cofinal ω-sequence in κ. Also, it satisfy the Mathias criteria [3] for the
Tree-Prikry forcing of the measures 〈U(κ, α) | α < κ〉.

Clearly all these example are Prikry-Type extensions.
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The Main Result

Theorem 10 ( Gitik, B.[6])

Let ~U be a coherent sequence with maximal measurable κ, such that o
~U(κ) < κ+.

Assume the inductive hypothesis:

(IH) For every δ < κ, any coherent sequence ~W with maximal measurable δ

and any set A ∈ V [H] for H ⊆M[ ~W ], there is C ⊆ CH , such that V [A] = V [C ].

Then for every V -generic filter G ⊆M[ ~U] and any set A ∈ V [G ], there is C ⊆ CG

such that V [A] = V [C ].

As a corollary of this, we obtain the first step toward a classification:

Corollary 11

Let G ⊆M[ ~U] be a V -generic filter producing the Magidor sequence CG . Assume

that ∀α ∈ CG ∪ {κ}.o
~U(α) < α+. Then for every A ∈ V [G ] there is C ⊆ CG ,

such that V [A] = V [C ].
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The Main Result

As we have seen from the examples, it is not clear which are the forcings such
that the models V [C ] are generic extensions of. In [4], we restrict the order of κ
to be below κ and define a class of ”Magidor-Type” forcing notions, denoted by
Mf [ ~U]. This class is basically a Magidor forcing adding elements from measures
prescribed by the function f . We then prove that the intermediate model must be
finite iterations of such forcings.

If time permits we will discuss it later. Let us sketch some of the ideas from the
proof of 10.
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Short Sequences

We start by reducing to sets of ordinals:

Proposition 1

It suffices to prove that for sets of ordinals X , V [X ] = V [C ] for some C ⊆ CG .

Proof

If A is any set, then by [11, Thm. 15.42] there is a forcing Q ∈ V and a generic
H ⊆ Q such that V [A] = V [H]. Let λ = |Q|, f : Q↔ λ ∈ V a bijection and
f ′′H = X ⊆ λ. Then V [H] = V [X ], and by assumption there is C ⊆ CG such that
V [X ] = V [C ], implying V [A] = V [X ] = V [C ].

Let A be a set of ordinals we prove theorem 10 by induction of λ := sup(A).
The case λ < κ follows from the following lemma:

Lemma 12

If A ⊆ V ,A ∈ V [G ], |A| < κ, then there is C ⊆ CG such that V [A] = V [C ].
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Short Sequences

The proof of lemma 12 uses the strong Prikry property.

Definition 13

A tree T ⊆ [κ]<ω is called a ~U-fat tree, if ht(T ) < ω and for every t ∈ T , either

or succT (t) := {α < κ | taα ∈ T} ∈ U(β, i) for some β ≤ κ and i < o
~U(β), or t

is a maximal element of the tree. Denote the set of Maximal elements by mb(T ).

Proposition 2 (The strong Prikry Property[5])

Suppose that p ∈M[ ~U] and D ⊆M[ ~U] is a dense open subset. Then there is

p ≤∗ p∗ and a ~U-fat tree T , such that for every ~b ∈ mb(T ), p∗a~b ∈ D.

Lemma 14 ([5])

Let T be a ~U-fat tree and f : mb(T )→ B where B is any set. Then there is a
~U-fat tree T ′ ⊆ T , with ht(T ′) = ht(T ) and I ⊆ {1, ..., ht(T )} such that for any
t, t ′ ∈ mb(T ′): t � I = t ′ � I ⇔ f (t) = f (t ′).
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Proof of Lemma 12

Proof of lemma 12

Assume for example that A = {an | n < ω} and let 〈a∼n | n < ω〉 be a sequence of

M[ ~U]-names for A. Let p ∈M[ ~U], for each n apply the Strong Prikry property to

find p ≤∗ pn and a ~U-fat tree Tn such that for every ~β ∈ mb(Tn), there is γ

pan
~β  a∼n = γ. Denote by fn(~β) = γ. Apply the previous lemma, shrink the tree

Tn to T ∗n and find In ⊆ {1, ..., ht(Tn)}. By ≤∗-closure, find a single pω such that
pn ≤∗ pω. If necessary, extend pω ≤∗ p∗ so that the set {p∗at | t ∈ mb(T ∗n )} is
pre-dense above p∗ for every n < ω. By density find such p∗ ∈ G . Then there is a
branch Dn ∈ mb(T ∗n ) such that p∗aDn ∈ G . Since (a∼n)G = an it follows that
fn(Dn) = an, define C = ∪n<ω(Dn) � In. Let us prove that V [A] = V [C ]: In V [C ]
we can construct the sequence 〈(Dn) � In | n < ω〉, then use AC to find branchs
〈D ′n | n < ω〉 such that D ′n ∈ mb(T ∗n ) and (D ′n) � In = (Dn) � In hence
fn(D ′n) = fn(Dn) = an and A = {fn(D ′n) | n < ω} ∈ V [C ].
In V [A] we can calculate each (Dn) � In, by taking any D ′n ∈ f −1n (an). Since
fn(Dn) = an = fn(D ′n), it follows that (Dn) � In = (D ′n) � In. We conclude that
C = ∪n<ω(D ′n) � In ∈ V [A] and V [A] = V [C ].
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A Property of the Magidor Generic Club

Additional applications of these combinatorical properties yield the following
useful property Hausdorff-Like separation property, which is known also for other
Prikry-Type forcing [3],[4]:

Lemma 15

Let δ ∈ Lim(CG ), Y ∈ V [CG ] be a set of ordinals, |Y | < δ, such that
CG ∩ Y = ∅. Then there is X ∈ ∩i<o~U (δ)U(δ, i) such that X ∩ Y = ∅.

As a consequence, we obtain Fuchs result to this variation of Magidor-Radin
forcing:

Corollary 16

Let G ,G ′ be V -generic filters for M[ ~U]. If G ′ ∈ V [G ] then CG ′ \ CG is finite. In
particular V [G ] = V [G ′] iff CG∆CG ′ is finite.
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The remaining cases

Suppose we proved the theorem for subsets of κ, and assume that
λ = sup(A) ≥ κ+. First let us take care of cf V [G ](λ) ≤ κ.

Proposition 3

Assume o
~U(κ) < κ+, and cf V [G ](λ) ≤ κ, then ∃C ⊆ CG s.t. V [A] = V [C ].

Proof.

Since κ is singular in V [G ] then cf V [G ](λ) < κ and by κ+ − c .c . of M[ ~U],
ν := cf V (λ) ≤ κ. Fix 〈γi | i < ν〉 ∈ V cofinal in λ. Work in V [A], for every i < ν
find di ⊆ κ such that V [di ] = V [A ∩ γi ]. By induction, there exists C∗ ⊆ CG such
that V [〈di | i < ν〉] = V [C∗], therefore C∗ ∈ V [A] and ∀i < ν A ∩ γi ∈ V [C∗].
This does not mean that A ∈ V [C∗]. In V [C∗], for i < ν fix a bijection

πi : 2γi ↔ PV [C∗](γi ). Find δi such that πi (δi ) = A ∩ γi . By κ+-c.c. of M[ ~U],
there if a function F : ν → P(λ) in V such that for every i < ν, δi ∈ F (i) and
|F (i)| ≤ κ. Let εi < κ be the index of δi inside F (i). By induction find C ′′ ⊆ CG

such that V [C ′′] = V [〈εi | i < ν〉] finally, find C ′ ⊆ CG s.t. V [C ′] = V [C∗,C ′′].
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The Remaining cases

To see that V [A] = V [C ′],

clearly, C∗ ∈ V [A] and therefore
〈πi , δi | i < ν〉 ∈ V [A]. Since F ∈ V , 〈εi | i < ν〉 ∈ V [A], hence C ′′ ∈ V [A]. It
follows that C ′ ∈ V [A]. For the other direction, C∗,C ′′ ∈ V [C ′], so
〈εi | i < ν〉 ∈ V [C ′], and since F ∈ V then 〈δi | i < ν〉 ∈ V [C ′]. Since
C∗ ∈ V [C ′] then also 〈πi | i < ν〉 ∈ V [C ′] so 〈πi (δi ) | i < ν〉 ∈ V [C ′]. It follows
that A = ∪i<νπi (δi ) ∈ V [C ′]. �

Assume that θ := cf V [G ](λ) > κ. To find the desired C ⊆ CG , it is tempting take
a cofinal sequence αi in V [A], apply the induction hypothesis to A ∩ αi for every
i < θ to obtain Ci ⊆ CG such that V [Ci ] = V [A ∩ αi ] and take C = ∪i<θCi .
However there are three problems here:

1 Although each Ci ∈ V [A], 〈Ci | i < θ〉 is not necessarily in V [A].

2 Taking the union might loss information i.e it is possible that Ci /∈ V [C ].

3 Even if C ⊆ CG , C ∈ V [A] is such that ∀i < θ.A ∩ αi ∈ V [C ] this does not
mean that A ∈ V [C ].
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The Union Might Loss information

Problem 2 can even occur when taking the union of two sets!

Example 17

Again let o
~U(κ) = δ0, o

~U(δ0) = 1, and a generic G such that
otp(CG ) = CG (ω) = δ. Let

D = {CG (CG (n)) | n < ω} and E = {CG (α) | ω ≤ α < CG (ω)} \ D

Then D ∪ E = {CG (α) | ω ≤ α < CG (ω)}, hence in V [D ∪ E ], CG (ω) is still
measurable. On the other hand, from D, we can reconstruct 〈CG (n) | n < ω〉 as

o
~U(CG (CG (n))) = CG (n). So it if impossible that D ∈ V [D ∪ E ].

To deal with problem 1 , we need to somehow make the choice of the Ci ’s inside
the model V [A]. This seems impossible as it involves referring to CG which is not
available in V [A]. However, consider the following definition:
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Mathias Sets

Definition 18 (Mathias set)

Let XA := {ν < κ | cf V [A](ν) < cf V (ν) = ν}. A set D ∈ V [A] is called a Mathias
set, if :

1 Lim(D) ⊆ Cl(XA).

2 For all δ ∈ Lim(D) and Y ∈ ∩i<o~U (δ)U(δ, i), there is ξ < δ such that

D ∩ (ξ, δ) ⊆ Y .

The following proposition enables us to refer to subsets of CG in V [A]:

Proposition 4

Let D ∈ V [A]. D is a Mathias set iff D ⊆∗ CG i.e. D \ CG is finite.

Proof.
The Direction D ⊆∗ CG implies that D is a Mathias set, is a standard density
argument of CG . For the other direction, we can use lemma 15.
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Overcoming the First Problem

Let us use Mathias sets in order to overcome the first obstacle: We use induction
hypothesis and the axiom of choice to find Mathias sets Di such that
V [Di ] = V [A ∩ αi ] and additionally 〈Dαi | i < θ〉 ∈ V [A]. Next we deal with the
problem 2 . Relaying on the techniques to deal with subsets of κ, we can prove:

Proposition 5

There is a sequence of Mathias sets 〈Di | i < θ〉 ∈ V [A] such that:

1 A ∩ αi ∈ V [Di ].

2 For every i < j < θ, Di ⊆∗ Dj .

Let us exploit the assumption that θ > κ to claim that this sequence stabilizes.

Theorem 19

Let ℵ0 < κ be a strong limit cardinal, and µ > κ be regular. Let 〈Dα | α < µ〉 be
any ⊆∗-increasing sequence of subsets of κ. Then the sequence =∗-stabilizes i.e.
there is α∗ < µ such that for every α∗ ≤ α < µ, Dα =∗ Dα∗ .
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Proof of theorem 19

Let α∗ be a stabilization point, then V [Dα∗ ] includes all the initial of A.

Proof of Thm 19

Assume otherwise, then by regularity of µ, find Y ⊆ µ, |Y | = µ and for all
α, β ∈ Y , α < β implies |Dβ \ Dα| ≥ ω. For every ξ < κ, find Eξ ⊆ ξ such that
the set

Xξ := {ν < µ | Dν ∩ ξ = Eξ}

is unbounded in µ. Since Dα is ⊆∗-increasing, for every αξ := min(Xξ) ≤ α < µ,
Dα ∩ ξ =∗ Eξ. By regularity, α∗ := sup{αξ | ξ < κ} < µ. It follows that for every
δ < κ and every α∗ ≤ β1 < β2 < µ. |Dβ1 ∩ δ∆Dβ1 ∩ δ| < ω and

(∗) For every α∗ ≤ β1 < β2 < µ. |Dβ1∆Dβ2 | ≤ ω

Also cf (κ) = ω, since for any distinct β1, β2 ∈ Y \ α∗, |Dβ1∆Dβ2 | = ℵ0, and
cannot be bounded. Let 〈ηn | n < ω〉 be cofinal in κ. Define a partition
f : [Y \ α∗]2 → ω: For any i < j in Y \ α∗, let f (i , j) = ni,j < ω such that
(Dαi \ ηni,j ) ⊆ (Dαj \ ηni,j ). It is well defined as Dαi \ Dαj is finite.

Benhamou, T. CUNY Set Theory Seminar, Fall 2021 November 12, 2021 28 / 59



Proof of theorem 19

Let α∗ be a stabilization point, then V [Dα∗ ] includes all the initial of A.

Proof of Thm 19

Assume otherwise, then by regularity of µ, find Y ⊆ µ, |Y | = µ and for all
α, β ∈ Y , α < β implies |Dβ \ Dα| ≥ ω.

For every ξ < κ, find Eξ ⊆ ξ such that
the set

Xξ := {ν < µ | Dν ∩ ξ = Eξ}

is unbounded in µ. Since Dα is ⊆∗-increasing, for every αξ := min(Xξ) ≤ α < µ,
Dα ∩ ξ =∗ Eξ. By regularity, α∗ := sup{αξ | ξ < κ} < µ. It follows that for every
δ < κ and every α∗ ≤ β1 < β2 < µ. |Dβ1 ∩ δ∆Dβ1 ∩ δ| < ω and

(∗) For every α∗ ≤ β1 < β2 < µ. |Dβ1∆Dβ2 | ≤ ω

Also cf (κ) = ω, since for any distinct β1, β2 ∈ Y \ α∗, |Dβ1∆Dβ2 | = ℵ0, and
cannot be bounded. Let 〈ηn | n < ω〉 be cofinal in κ. Define a partition
f : [Y \ α∗]2 → ω: For any i < j in Y \ α∗, let f (i , j) = ni,j < ω such that
(Dαi \ ηni,j ) ⊆ (Dαj \ ηni,j ). It is well defined as Dαi \ Dαj is finite.

Benhamou, T. CUNY Set Theory Seminar, Fall 2021 November 12, 2021 28 / 59



Proof of theorem 19

Let α∗ be a stabilization point, then V [Dα∗ ] includes all the initial of A.

Proof of Thm 19

Assume otherwise, then by regularity of µ, find Y ⊆ µ, |Y | = µ and for all
α, β ∈ Y , α < β implies |Dβ \ Dα| ≥ ω. For every ξ < κ, find Eξ ⊆ ξ such that
the set

Xξ := {ν < µ | Dν ∩ ξ = Eξ}

is unbounded in µ.

Since Dα is ⊆∗-increasing, for every αξ := min(Xξ) ≤ α < µ,
Dα ∩ ξ =∗ Eξ. By regularity, α∗ := sup{αξ | ξ < κ} < µ. It follows that for every
δ < κ and every α∗ ≤ β1 < β2 < µ. |Dβ1 ∩ δ∆Dβ1 ∩ δ| < ω and

(∗) For every α∗ ≤ β1 < β2 < µ. |Dβ1∆Dβ2 | ≤ ω

Also cf (κ) = ω, since for any distinct β1, β2 ∈ Y \ α∗, |Dβ1∆Dβ2 | = ℵ0, and
cannot be bounded. Let 〈ηn | n < ω〉 be cofinal in κ. Define a partition
f : [Y \ α∗]2 → ω: For any i < j in Y \ α∗, let f (i , j) = ni,j < ω such that
(Dαi \ ηni,j ) ⊆ (Dαj \ ηni,j ). It is well defined as Dαi \ Dαj is finite.

Benhamou, T. CUNY Set Theory Seminar, Fall 2021 November 12, 2021 28 / 59



Proof of theorem 19

Let α∗ be a stabilization point, then V [Dα∗ ] includes all the initial of A.

Proof of Thm 19

Assume otherwise, then by regularity of µ, find Y ⊆ µ, |Y | = µ and for all
α, β ∈ Y , α < β implies |Dβ \ Dα| ≥ ω. For every ξ < κ, find Eξ ⊆ ξ such that
the set

Xξ := {ν < µ | Dν ∩ ξ = Eξ}

is unbounded in µ. Since Dα is ⊆∗-increasing, for every αξ := min(Xξ) ≤ α < µ,
Dα ∩ ξ =∗ Eξ. By regularity, α∗ := sup{αξ | ξ < κ} < µ.

It follows that for every
δ < κ and every α∗ ≤ β1 < β2 < µ. |Dβ1 ∩ δ∆Dβ1 ∩ δ| < ω and

(∗) For every α∗ ≤ β1 < β2 < µ. |Dβ1∆Dβ2 | ≤ ω

Also cf (κ) = ω, since for any distinct β1, β2 ∈ Y \ α∗, |Dβ1∆Dβ2 | = ℵ0, and
cannot be bounded. Let 〈ηn | n < ω〉 be cofinal in κ. Define a partition
f : [Y \ α∗]2 → ω: For any i < j in Y \ α∗, let f (i , j) = ni,j < ω such that
(Dαi \ ηni,j ) ⊆ (Dαj \ ηni,j ). It is well defined as Dαi \ Dαj is finite.

Benhamou, T. CUNY Set Theory Seminar, Fall 2021 November 12, 2021 28 / 59



Proof of theorem 19

Let α∗ be a stabilization point, then V [Dα∗ ] includes all the initial of A.

Proof of Thm 19

Assume otherwise, then by regularity of µ, find Y ⊆ µ, |Y | = µ and for all
α, β ∈ Y , α < β implies |Dβ \ Dα| ≥ ω. For every ξ < κ, find Eξ ⊆ ξ such that
the set

Xξ := {ν < µ | Dν ∩ ξ = Eξ}

is unbounded in µ. Since Dα is ⊆∗-increasing, for every αξ := min(Xξ) ≤ α < µ,
Dα ∩ ξ =∗ Eξ. By regularity, α∗ := sup{αξ | ξ < κ} < µ. It follows that for every
δ < κ and every α∗ ≤ β1 < β2 < µ. |Dβ1 ∩ δ∆Dβ1 ∩ δ| < ω and

(∗) For every α∗ ≤ β1 < β2 < µ. |Dβ1∆Dβ2 | ≤ ω

Also cf (κ) = ω, since for any distinct β1, β2 ∈ Y \ α∗, |Dβ1∆Dβ2 | = ℵ0, and
cannot be bounded. Let 〈ηn | n < ω〉 be cofinal in κ. Define a partition
f : [Y \ α∗]2 → ω: For any i < j in Y \ α∗, let f (i , j) = ni,j < ω such that
(Dαi \ ηni,j ) ⊆ (Dαj \ ηni,j ). It is well defined as Dαi \ Dαj is finite.

Benhamou, T. CUNY Set Theory Seminar, Fall 2021 November 12, 2021 28 / 59



Proof of theorem 19

Let α∗ be a stabilization point, then V [Dα∗ ] includes all the initial of A.

Proof of Thm 19

Assume otherwise, then by regularity of µ, find Y ⊆ µ, |Y | = µ and for all
α, β ∈ Y , α < β implies |Dβ \ Dα| ≥ ω. For every ξ < κ, find Eξ ⊆ ξ such that
the set

Xξ := {ν < µ | Dν ∩ ξ = Eξ}

is unbounded in µ. Since Dα is ⊆∗-increasing, for every αξ := min(Xξ) ≤ α < µ,
Dα ∩ ξ =∗ Eξ. By regularity, α∗ := sup{αξ | ξ < κ} < µ. It follows that for every
δ < κ and every α∗ ≤ β1 < β2 < µ. |Dβ1 ∩ δ∆Dβ1 ∩ δ| < ω and

(∗) For every α∗ ≤ β1 < β2 < µ. |Dβ1∆Dβ2 | ≤ ω

Also cf (κ) = ω, since for any distinct β1, β2 ∈ Y \ α∗, |Dβ1∆Dβ2 | = ℵ0, and
cannot be bounded.

Let 〈ηn | n < ω〉 be cofinal in κ. Define a partition
f : [Y \ α∗]2 → ω: For any i < j in Y \ α∗, let f (i , j) = ni,j < ω such that
(Dαi \ ηni,j ) ⊆ (Dαj \ ηni,j ). It is well defined as Dαi \ Dαj is finite.

Benhamou, T. CUNY Set Theory Seminar, Fall 2021 November 12, 2021 28 / 59



Proof of theorem 19

Let α∗ be a stabilization point, then V [Dα∗ ] includes all the initial of A.

Proof of Thm 19

Assume otherwise, then by regularity of µ, find Y ⊆ µ, |Y | = µ and for all
α, β ∈ Y , α < β implies |Dβ \ Dα| ≥ ω. For every ξ < κ, find Eξ ⊆ ξ such that
the set

Xξ := {ν < µ | Dν ∩ ξ = Eξ}

is unbounded in µ. Since Dα is ⊆∗-increasing, for every αξ := min(Xξ) ≤ α < µ,
Dα ∩ ξ =∗ Eξ. By regularity, α∗ := sup{αξ | ξ < κ} < µ. It follows that for every
δ < κ and every α∗ ≤ β1 < β2 < µ. |Dβ1 ∩ δ∆Dβ1 ∩ δ| < ω and

(∗) For every α∗ ≤ β1 < β2 < µ. |Dβ1∆Dβ2 | ≤ ω

Also cf (κ) = ω, since for any distinct β1, β2 ∈ Y \ α∗, |Dβ1∆Dβ2 | = ℵ0, and
cannot be bounded. Let 〈ηn | n < ω〉 be cofinal in κ. Define a partition
f : [Y \ α∗]2 → ω: For any i < j in Y \ α∗, let f (i , j) = ni,j < ω such that
(Dαi \ ηni,j ) ⊆ (Dαj \ ηni,j ). It is well defined as Dαi \ Dαj is finite.

Benhamou, T. CUNY Set Theory Seminar, Fall 2021 November 12, 2021 28 / 59



Propf of Thm. 19 continues

Since κ > ℵ0 is strong limit, (2<ℵ1)+ = (2ℵ0)+ < κ < µ, hence we can apply the
Erdös-Rado theorem and find I ⊆ Y \ α∗ such that otp(I ) = ω1 + 1 which is
homogeneous with color n∗ < ω. Therefore for any i < j in I , Di \ ηn∗ ⊆ Dj \ ηn∗
and (Dj \ ηn∗) \ (Di \ ηn∗) countably infinite. Let 〈iρ | ρ < ω1 + 1〉 be the
increasing enumeration of I . For every r < ω1, pick any
δr ∈ (Dir+1 \ ηn∗) \ (Dir \ ηn∗). Then all the δr ’s are distinct they all belong to
Diω1
\ Di0 . It follows that |Diω1

\ Di0 | ≥ ω1, and since i0, iω1 ≥ α∗, this is a
contradiction to (∗).

Finally, to resolve problem 3 . We will show that there are no fresh subsets with
respect to the models V [C ] ⊆ V [G ] i.e. if ∀α < sup(A), A ∩ α ∈ V [C ] then
A ∈ V [C ]. The forcing completing V [C ] to V [G ] is the quotient and from the
following theorems we can deduce that this quotient does not add fresh subsets.

Theorem 20

Every quotient of M[ ~U] is κ+-c.c. in V [G ].
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Finally, to resolve problem 3 . We will show that there are no fresh subsets with
respect to the models V [C ] ⊆ V [G ] i.e. if ∀α < sup(A), A ∩ α ∈ V [C ] then
A ∈ V [C ]. The forcing completing V [C ] to V [G ] is the quotient and from the
following theorems we can deduce that this quotient does not add fresh subsets.

Theorem 20

Every quotient of M[ ~U] is κ+-c.c. in V [G ].
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Overcoming the Third Problem

Theorem 21 (No Fresh Subsets of cofinality λ)

Let W |= ZFC and P ∈W a forcing notion. Let T ⊆ P be any W -generic filter
and θ is a regular cardinal in W [T ]. Assume P is θ-c.c. in W [T ]. Then in W [T ]
there are no fresh subsets with respect to W of cardinals λ such that θ = cf (λ).

Proof of theorem 21

Assume otherwise and let A ∈W [T ] be a fresh subset of λ. Pick a name A∼ for A
and work within W [T ]. We define recursively a sequence 〈ri , si | i < θ〉. Let
r0  A∼ is fresh. Since A /∈W is fresh, there must be β0 such that r0 does not
force A∼ ∩ β0 = A ∩ β0, hence there is B0 6= A ∩ β0 and r0 ≤ s0  A∼ ∩ β0 = B0.
Assume ri , si , βi are defined for every i < j < θ. Let β′j := sup{βi | i < j} < λ,
find rj ∈ T such that r0 ≤ rj  A∼ ∩ β

′
j = A ∩ β′j . Also find, βj < λ, Bj 6= A ∩ βj

and sj ≥ rj such that sj  A∼ ∩ βj = Bj . To obtain the contradiction note that
〈sj | j < θ〉 is an antichain, since if i < j and si , sj ≤ s then s forces contradictory
information about A∼ ∩ βi .
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The quotient forcing I

To finish the proof it remains to show that quotients are κ+-c.c. Before, let us
recall some basic facts about the quotient.

Definition 22
Let P,Q be forcing notions. A function τ : P→ Q is a projection iff τ is order
preserving, Im(τ) is dense, and

∀p ∈ P.∀q ≥ τ(p).∃p′ ≥ p.π(p′) ≥ q

Definition 23

Let P,Q ∈ V be forcing notions, τ : P→ Q be any projection and let H ⊆ Q be
V -generic. Define the quotient forcing P/H = τ−1

′′
H. Also if G ⊆ P is a

V -generic filter, the projection of G is the filter

τ∗(G ) := {q ∈ Q | ∃p ∈ G .q ≤Q τ(p)}
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The quotient forcing II

Proposition 6

Let τ : P→ Q be a projection, then:

1 If G ⊆ P is V -generic then τ∗(G ) is V -generic filter for Q
2 If G ⊆ P is V -generic then G ⊆ P/τ∗(G ) is V [τ∗(G )]-generic filter.

3 If H ⊆ Q is V -generic and G ⊆ P/H is V [H]-generic, then τ∗(G ) = H and
G ⊆ P is V -generic.

Definition 24

Let P be a forcing notion and D∼ be a P-name for a subset of κ. Define PD∼, the
complete subalgebra of regular open cuts 〈RO(P),≤B 〉 a generated by the set
X = {||α ∈ D∼|| | α < κ}.

aThe order ≤B is in the standard position of Boolean algebras orders i.e. p ≤B q means
p  q ∈ Ĝ .
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The quotient forcing III

Definition 25

Define the function π : P→ PD∼ by π(p) = inf{b ∈ PD∼ | p ≤B b}.

It not hard to check that π is a projection. Let G be V -generic for P and D ⊆ κ
the interpretation of D∼ under G i.e. D∼G = D. Denote by H = π∗(G ) the
V -generic filter for PD∼ induce, then V [D] = V [H] (see for example [11, 15.42]).
In fact

D = {α < κ | ||α ∈ D∼|| ∈ X ∩ H}

As for the other direction, any generic filter H is definable and uniquely
determined (see [11, Lemma 15.40]) by the set

X ∩ H = {||α ∈ D∼|| | α ∈ D}

We sometimes abuse notation by defining P/D = P/π∗(G ). It is important to
note that P/D depends on the choice of the name D∼.
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The quotient forcing IV

Proposition 7

For every q ∈ P, and let G be V -generic. Denote by H = π∗(G ). Then
q ∈ P/H iff there is a V -generic G ′ ⊆ P such that q ∈ G ′ and π∗(G

′) = H.

Note that since π∗(G
′) is uniquely determined by X ∩ π∗(G ′), the requirement

that π∗(G
′) = π∗(G ) is equivalent to D∼G ′ = D∼G .

Proof.

Let q ∈ P/H, G ′ ⊆ P/H be any V [H]-generic with q ∈ G ′. Then by proposition
6.3, G ′ ⊆ P is a V -generic filter and π∗(G

′) = π∗(G ) = H. For the other
direction, if q ∈ G ′ for some G ′ ⊆ P such that π∗(G

′) = H, then
π∗(G

′) = π∗(G ). Since, π(q) ∈ π(G ′) = π∗(G ), then a ∈ π−1′′H =: P/H.

Let us turn to the proof of κ+-c.c.:
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The quotient forcing V

Theorem 26

Let π : M[ ~U]→ P be a projection and G ⊆M[ ~U] be V -generic and H = π∗(G )

be the induced generic for P. Then V [G ] |= M[ ~U]/H is κ+-c.c.

Note that the standard argument for κ+-c.c. does not work: Assume otherwise,
and let 〈pi | i < κ+〉 ∈ V [G ] be an antichain in M[ ~U]/H. Each pi is of the form

pai,↓〈κ,Ai 〉. Since κ+ is still regular in V [G ], there are i 6= j such that pi,↓ = pj,↓.

Hence pai,↓〈κ,Ai ∩Aj〉 ≥ pi , pj . However, pai,↓〈κ,Ai ∩Aj〉 might not be in M[ ~U]/H:

Example 27

In Prikry forcing, let C = {CG (2n) | n < ω}. Conditions in P(U)/H are
〈α0, ..., αn,A〉 such that:

1 α2i = CG (2i).

2 For m > n/2, CG (2m) ∈ A.

3 For m > n/2, (CG (2m − 2),CG (2m)) ∩ A 6= ∅.
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The quotient forcing VI

The third condition might fail when intersecting large sets.
Proof of 26: Assume otherwise, and let 〈pi | i < κ+〉 ∈ V [G ] be an anthichain in

M[ ~U]/H. Let 〈p∼i | i < κ+〉 be a sequence of M[ ~U]-names for them and r ∈ G
such that

r  〈p∼i | i < κ+〉 is an antichain in M[ ~U]/H∼
Work in V , for every i < κ+, let r ≤ ri ∈M[ ~U] and ξi ∈M[ ~U] be such that
ri  p∼i = ξi .

Lemma 28

There is qi ≥ ξi such that ∀q ≥ qi∃r ′′ ≥ ri r
′′  q ∈M[ ~U]/H∼

Proof of Lemma: Otherwise, for every q ≥ ξi , there is q′ ≥ q such that every
r ′′ ≥ ri , r

′′ 6 q′ ∈M[ ~U]/H∼. In particular, the set

E = {q ≥ ξi | ∀r ′′ ≥ ri .r
′′ 6 q ∈M[ ~U]/H∼}
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The quotient forcing VII

is dense above ξi . To obtain a contradiction, let G ′ be any generic for M[ ~U] such
that ri ∈ G ′ and denote H ′ = (H∼)G ′ = π∗(G

′). Since ri ≥ r , r ∈ G ′ and therefore

ξi = (p∼i )G ′ ∈M[ ~U]/H ′. Then there is a V -generic filter G ′′ for M[ ~U] such that
ξi ∈ G ′′ and π∗(G

′′) = H ′. By density of E , there is ξi ≤ q ∈ E ∩ G ′′ and in

particular, q ∈M[ ~U]/H ′. Thus, there is ri ≤ r ′′ ∈ G ′ such that

r ′′  q ∈M[ ~U]/H∼, contradicting q ∈ E . Lemma

For every i < κ+ fix qi ≥ ξi such that

(∗)i ∀q ≥ qi .∃r ′′ ≥ ri .r
′′  q ∈M[ ~U]/H∼

Denote by qi = 〈ti,1, ..., ti,ni , 〈κ,A(qi )〉〉 and ri = 〈si,1, ..., si,mi , 〈κ,A(ri )〉〉. Find
X ⊆ κ+ such that |X | = κ+ and ~t = 〈t1, .., tn〉, ~s = 〈s1, ..., sm〉 such that for every
i ∈ X , 〈ti1, ..., tini 〉 = 〈t1, .., tn〉, and 〈si1, ..., simi 〉 = 〈s1, ..., sm〉. This means that
for every i ∈ X , qi = ~ta〈κ,A(qi )〉 and ri = ~sa〈κ,A(ri )〉. Let
q = ~ta〈κ,A(qi ) ∩ A(qj)〉, then by (∗)i there is r ′ ≥ ri such that r ′ forces

q ∈M[ ~U]/H∼. This means that r ′ must be incompatible with rj . Otherwise, there
would be r ′′ ≥ r ′, ri , rj , which forces contradictory information. Since
r ′ � max(~s) ≥ ri � max(~s) = ~s = rj � max(~s), this means that the upper part of r ′
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The quotient forcing VIII

is incompatible with rj(which is simply 〈κ,A(rj)〉), namely, is ~ν are the ordinals in
the part above max~s in r ′ then ~ν /∈ [A(rj)]<ω. The following generalization of
Galvin’s theorem [2, P. 143] will suffice to avoid this situation:

Proposition 8

Suppose that 2<κ = κ and let F be a normal filter over κ . Let 〈Xi | i < κ+〉 be a
sequence of sets such that for every i < κ+, Xi ∈ F , and let 〈Zi | i < κ+〉 be any
sequence of subsets of κ. Then there is Y ⊆ κ+ of cardinality κ, and α∗ ∈ κ+ \Y
such that

1
⋂

i∈Y Xi ∈ F .

2 [Zα∗ ]
<ω ⊆

⋃
i∈Y [Zi ]

<ω.

Apply lemma 8 to Xi = A(qi ), F = ∩ξ<o~U (κ)U(κ, ξ) and Zi = A(ri ). There is

Y ⊆ X of cardinality κ, and α∗ ∈ X \ Y such that

1
⋂

i∈Y A(qi ) ∈
⋂

i<κ U(κ, i).

2 [A(rα∗)]<ω ⊆
⋃

i∈Y [A(ri )]<ω
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The quotient forcing IX

Consider the set A = A(qα∗) ∩ (
⋂

i∈Y A(qi )). For every i ∈ Y ,

qi ≤ ~ta〈κ,A〉 =: q∗. Then by (∗)α∗ , there is r ′′ ≥ rα∗ such that

r ′′  q∗ ∈M[ ~U]/H∼. Hence there ~s ≤ s ′′ ∈M[ ~U] � max(κ(~s)), k < ω,
~ν ∈ [A(rα∗)]k and B1, ...,Bk such that

r ′′ = 〈s ′′, 〈ν1,B1〉, ..., 〈νk ,Bk〉, 〈κ,A(r ′′)〉〉

Since ~ν ∈ [A(rα∗)]<ω and by the property of α∗, ~ν ∈
⋃

j∈Y [A(rj)]<ω. Thus, there

is j ∈ Y such that ~ν ∈ [A(rj)]<ω. Since rα∗ and rj have the same lower part, and
~ν ∈ [A(rj)]<ω, it follows that r ′′ and rj are compatible, contradiction.
Proof of 8: For every α < κ+,ξ < κ and ~ν ∈ [Zα]<ω, let

Hα,ξ,~ν = {i < κ+ | Xi ∩ ξ = Xα ∩ ξ ∧ ~ν ∈ [Zi ]
<ω}

Note that α ∈ Hα,ξ,~ν .

Lemma 29

There is α∗ < κ+ such that for every ξ < κ and ~ν ∈ [Zα∗ ]
<ω, |Hα∗,ξ,~ν | = κ+
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The quotient forcing X

Proof of Lemma. Otherwise, for every α < κ+ there is ξα < κ and ~να ∈ [Zα]<ω

such that |Hα,ξα,~να | ≤ κ. There is X ⊆ κ+, ~ν∗ ∈ [κ]<ω and ξ∗ < κ, such that
|X | = κ+ and for every

∀α ∈ X , ~να = ~ν∗ ∧ ξα = ξ

Since κ is strong limit and ξ < κ, there are less than κ many possibilities for
Xα ∩ ξ∗. Hence we can shrink X to X ′ ⊆ X such that |X ′| = κ+ and find a single
set E∗ ⊆ ξ∗ such that for every α ∈ X ′, Xα ∩ ξ∗ = E∗. It follows that for every
α ∈ X ′:

Hα,ξα,~να = Hα,ξ∗,~ν∗ = {i < κ+ | Xi ∩ ξ∗ = E∗ ∧ ~ν∗ ∈ [Zi ]
<ω}

Hence the set Hα,ξα,~να does not depend on α, which means it is the same for
every α ∈ X ′. Denote this set by H∗. To see the contradiction, note that for
every α ∈ X ′, α ∈ Hα,ξα,~να = H∗, thus X ′ ⊆ H∗, hence

κ+ = |X ′| ≤ |H∗| ≤ κ

Benhamou, T. CUNY Set Theory Seminar, Fall 2021 November 12, 2021 41 / 59



The quotient forcing XI

contradiction. lemma

End of proof of proposition 8: Let α∗ be as in the claim. Let us define Y ⊆ κ+
that witness the lemma. First, enumerate [Zα∗ ]

<ω, 〈~νi | i < κ〉. By recursion,
define βi for i < κ. At each step we pick βi ∈ Hα∗,i+1,~νi \ {βj | j < i}. It is
possible find such βi , since the cardinality of Hα∗,i+1,~νi is κ+, and {βj | j < i} is
of size less than κ. Let us prove that Y = {βi | i < κ} is as wanted. Indeed, by
definition, it is clear that |Y | = κ and also [Zα∗ ]

<ω ⊆
⋃

x∈Y [Zx ]<ω.
Let us argue that

⋂
α<κ Xβα ∈ F . By normality assumption about F ,

X ∗ := Xα∗ ∩∆i<κXβi ∈ F

Thus it suffices to prove that X ∗ ⊆
⋂
α<κ Xβα . Let ζ ∈ X ∗, then for every α < ζ,

ζ ∈ Xβα . For α ≥ ζ, recall that βα ∈ Hα∗,α+1,~να , hence

Xα∗ ∩ (α + 1) = Xβα ∩ (α + 1)

and since ζ ∈ Xα∗ ∩ (α + 1), ζ ∈ Xβα . We conclude that ζ ∈
⋂
α<κ Xβi , therefore

X ∗ ⊆ Xα∗ ∩
⋂
α<κ Xβi .
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Galvin’s Property I

Question
Suppose that P ∗ Q∼ satisfies λ−c.c.. Let G ∗ H be a generic subset of P ∗ Q∼.
Consider the interpretation Q of Q∼ in V [G ,H]. Does it satisfies λ−c.c.?

Clearly, this is not true in general. The simplest, let P be trivial and Q be the
forcing for adding a branch to a Suslin tree. Then, in VQ , Q will not be c.c.c.
anymore. Our attention in theorem 20 is to subforcings and projections of M[ ~U],
however, the argument given work for more general Prikry-Type forcings:

Definition 30
Let F be a κ−complete uniform filter over a set X , for a regular uncountable
cardinal κ. We say that F has:

1 The Galvin property iff every family of κ+ members of F has a subfamily of
cardinality κ with intersection in F .

2 The generalized Galvin property iff it satisfies the conclusion of 8.
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Galvin’s Property II

Theorem 31

Suppose that P is either Prikry or Magidor or Magidor-Radin or Radin or Prikry
forcing with an ultrafilter satisfying the generalized Galvin Property. Let Q∼ be a
quotient of P and G (P) be a V -generic subset of P.
Then, the interpretation of Q∼ in V [G (P)], satisfies κ+−c.c. there.

We do not know how to generalize this theorem to wider classes of Prikry type
forcing notions.
For example the following may be the first step:

Question
Is the result valid for a long enough Magidor iteration of the Prikry forcings?

The problem is that there is no single complete enough filter here, and so the
Galvin Theorem (or its generalization) does not seem to apply.
The following question looks natural in this context:

Benhamou, T. CUNY Set Theory Seminar, Fall 2021 November 12, 2021 45 / 59



Galvin’s Property III

Question

Characterize filters (or ultrafilters) which satisfy the Galvin property (or the
generalized Galvin property).

Construction by U. Abraham and S. Shelah [1] may be relevant here. They

constructed a model in which there is a sequence 〈Ci | i < 2µ
+〉 in Cubµ+ such

that the intersection of any µ+ clubs in the sequence is of cardinality less that µ.
So the filter Cubµ+ does not posses the Galvin property. Additional restrictions
here are posed due to S. Garti[8].
The following questions seems to be open:

Question
Assume GCH. Let κ be a regular uncountable cardinal. Is there a κ-complete
filter over κ which fails to satisfy the Galvin property?

Let us note that if the ultrafilter is not on κ, then there is such an ultrafilter,
namely, a fine κ-complete ultrafilter over Pκ(κ+)) does not satisfy the Galvin
property:
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Galvin’s Property IV

For every α < κ+, let Xα = {Z ∈ Pκ(κ+) | α ∈ Z}, then Xα ∈ U since U is fine
but the intersection of any κ elements from this sequence of sets is empty.
A fine normal ultrafilter on Pκ(λ) is used for the supercompact Prikry forcing (see
[9] for the definition). Hence, the following question is natural:

Question
Assume GCH and let λ > κ be a regular cardinal. Is every quotient forcing of the
supercompact Prikry forcing also λ+-c.c. in the generic extension?

Our prime interest is on κ−complete ultrafilters over a measurable cardinal κ.
Note the following:

Proposition 9

It is consistent that every κ−complete(or even σ-complete) ultrafilter over a
measurable cardinal κ has the generalized Galvin property.

This holds in the model L[U], where U is a unique normal measure on κ. In this
model every ultrafilter is Rudin-Keisler equivalent to a finite power of U (see for
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Galvin’s Property V

example [11, Lemma 19.21]. By 35, it is easy to see that all such ultrefilters
satisfy the generalized Galvin property. �
In context of ultrafilters over a measurable, the following is unclear:

Question
Is it consistent to have a κ-complete ultrafilter over κ which does not have the
Galvin property?

Question
Is it consistent to have a measurable cardinal κ carrying a κ−complete ultrafilter
which extends the closed unbounded filter Cubκ (i.e., Q−point) which fails to
satisfy the Galvin property?

It is possible to produce more examples of ultrafilters (and filters) with generalized
Galvin property. The simplest example of this kind will be U ×W , where U,W
are normal ultrafilters over κ. We will work in a bit more general setting.
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Galvin’s Property VI

Definition 32

Let F be a uniform κ−complete filter over a regular uncountable cardinal κ. F is
called a P-point filter iff there is π : κ→ κ such that

1 π is almost one to one i.e. there is X ∈ F such that for every α < κ,
|π−1α ∩ X | < κ,

2 For every {Ai | i < κ} ⊆ F , ∆∗i<κAi = {ν < κ | ∀i < π(ν)(ν ∈ Ai )} ∈ F .

Clearly, every normal filter F is a P−point, but there are many non-normal
P−points as well. For example take a normal filter U and move it to a
non-normal by using a permutation on κ. Also, if F is an ultrafilter, then π is just
a function representing κ in the ultrapower by F .

Definition 33

Let F1, ...,Fn be P-point filters over κ, and let π1, ..., πn be the witnessing
functions for it. Denote by [κ]n∗, the set of all n-tuples 〈α1, .., αn〉 such that for
every 2 ≤ i ≤ n, αi−1 < πi (αi ).
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Galvin’s Property VII

Note that if Fi ’s are normal, the πi = id and [κ]n∗ = [κ]n.

Definition 34

Let F1, ...,Fn be P-point filters over κ, and let π1, ..., πn be the witnessing
functions for it. Define a filter

∏n∗
i=1 Fi over [κ]n∗ recursively. For X ⊆ [κ]n∗:

X ∈
∏n∗

i=1 Fi ⇔
{
α < κ | Xα ∈

∏n∗
i=2 Fi

}
∈ F1

Where Xα = {〈α2, ..., αn〉 ∈ [κ]n−1∗ | 〈α, α2, ..., αn〉 ∈ X}.

Again, if the filters are normal, this is simply a product.

Proposition 10

Let F1, ...,Fn be P-point filters over κ, and let π1, ..., πn be the witnessing
functions for it. Then for every X ∈

∏n∗
i=1 Fi , there are Xi ∈ Fi such that∏n∗

i=1 Xi ⊆ X .
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Galvin’s Property VIII

By induction on n, for n = 1, it is clear. Let X ∈
∏n∗

i=1 Fi . Let

X1 =
{
α < κ | Xα ∈

∏n∗
i=2 Fi

}
∈ F1

For every α ∈ X1, find by induction hypothesis Xα,i ∈ Fi for 2 ≤ i ≤ n such that∏n∗
i=2 Xα,i ⊆ Xα. Define

Xi = ∆∗α<κXα,i

since Fi is P-point, Xi ∈ Fi . Let us argue that
∏n∗

i=1 Xi ⊆ X . Let
〈α1, .., αn〉 ∈

∏n∗
i=1 Xi , then for every 2 ≤ i ≤ n, α1 < π(αi ), hence αi ∈ Xα1,i . It

follows that 〈α2, ..., αn〉 ∈
∏n∗

i=2 Xα1,i ⊆ Xα1 . By definition of Xα1 ,
〈α1, α2...αn〉 ∈ X .�

Corollary 35

Let F1, ...,Fn be P-point filters over κ, and let π1, ..., πn be the witnessing
functions for it. Then

∏n∗
i=1 Fi also satisfy the generalized Galvin property of 8.
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Galvin’s Property IX

Let 〈Xi | i < κ+〉 and 〈Zi | i < κ+〉 as in 8. By proposition 10, for every

1 ≤ j ≤ n, and i < κ+, find X
(i)
j ∈ Fj such that

∏∗n
j=1 X

(i)
j ⊆ Xi .

For every ~ξ = 〈ξ1, ..., ξn〉 ∈ [κ]∗n every ~ν ∈ [κ]<ω and every α < κ+, define

Hα,~ξ,~ν =
{
γ < κ+ | ∀1 ≤ i ≤ n.X

(γ)
i ∩ ξi = X

(α)
i ∩ ξi and ~ν ∈ [Zγ ]<ω

}
As in 8, for a fix ~ξ, there are less than κ many possibilities for

〈X (α)
1 ∩ ξ1,X (α)

2 ∩ ξ2, ...,X (α)
n ∩ ξn〉, hence we can find α∗ < κ+, such that for

every ~ξ and ~ν, |Hα∗,~ξ,~ν | = κ+.

Enumerate [Zα∗ ]
<ω by 〈~νi | i < κ〉 and also each Fi is P-point, so for every j < κ,

there is ρ
(j)
i > sup(π−1

′′

i [j ] ∩ Bi ) for some set Bi ∈ Fi . Define the sequence βj by
induction,

βj ∈ H
α∗,〈ρ(j)1 ,...,ρ

(j)
n 〉,~νj

\ {βk | k < j}

We claim once again that

Xα∗ ∩
⋂

j<κ Xβj ∈
∏n∗

i=1 Fi
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Galvin’s Property X

To see this, define for every 1 ≤ i ≤ n

Ci := X
(α∗)
i ∩∆∗j<κX

(βj )
i ∈ Fi

Let ~α ∈
∏n∗

i=1 Ci , and let j < κ. For every 1 ≤ i ≤ n, if j < π(αi ) then αi ∈ X
(βj )
i .

If π(αi ) ≤ j , then αi < ρ
(j)
i , so αi ∈ X (α∗) ∩ ρ(j)i . Since βj ∈ H

α∗,〈ρ(j)1 ,...,ρ
(j)
n 〉,~νj

,

αi ∈ X (α∗) ∩ ρ(j)i = X (βj ) ∩ ρ(j)i

Therefore, ~α ∈
∏n∗

i=1 X
(βj )
i ⊆ Xβj . The continuation is as in 8.�
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The Tree-Prikry forcing I
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Finish line

Thank you for your attention!
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