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The problem

We were inspired by Jech's proof of Gédel's second incompleteness
theorem for ZF.

Jech (1994) showed, by model theoretic means, that ZF does not
prove that ZF has a model.

Can we do something similar for PA?
We want to avoid the syntactic notion of proof and the
completeness theorem.

Difficulty: within PA we cannot speak about models of PA.
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The idea

Work with models of bounded complexity.

Theorem: the assertion that PA does not have a ¥3-model is
independent of PA.

What is a £9-model?
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First attempt

A ¥3-model is a model whose underlying set is N and such that
addition and multiplication are defined by ¥9 predicates.

It does not work. The standard model has these properties, but its
truth predicate is non-arithmetic. We need additional constrains to
be able to quantify over models of PA within PA.
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Second attempt

A ¥3-model is a maximal consistent theory T extending PA such
that the set {[¢] : ¢ € T} C N is X3-definable.

Kotlarski (2019) had already done this.

We need something different if we want to avoid the syntactic
notion of consistency.
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Final choice: use formulas with parameters
Let M be a model of PA with domain N.

M is a £3-model if the set of pairs ([¢],s) € N x N such that

M = ¢ls]

can be defined by a formula ©(x, y) of complexity ¥9.
(s € N codes the list of parameters).

Thus M E ¢[s] <= NEO([¢],s)

If U(x,y,z) € L3 is a universal ¥9-predicate and m = [©],

M= pls] <= N U(m,[¢],s)

We call m € N the code of the model M.
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Next level: non-standard non-standard [sic] models

So far we have

M E ¢ls] <= NE U(m,[¢],s)

Now we want to allow m, ¢, s to be non-standard.

There is a M3-formula MODEL(m) saying
“m codes a £9-model of PA”

namely MODEL(m) says that {(¢,s) | U(m,¢,s)} satisfies
Tarski's truth conditions (and contains the axioms of PA).

If MODEL(m) holds, we write “m = ¢[s]" for U(m, ¢, s).
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The modal operator

In provability logic (¢ is usually interpreted as “¢ is provable in
PA".

Now we redefine (¢ as the I'Ig—formula expressing “¢ holds in all
¥ 9-models of PA:

O¢ : <= Vm(MODEL(m) — Vs“m = ¢[s]").
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Digression: Kripke models

In the Kripke semantic for provability logic, a modal formula is valid
if it is true in every well founded transitive Kripke model.

*
B A-B

-A,-B

« I OAAD(B = O-A)

It is tempting to interpret the nodes of the Kripke frame as models
of PA. Our interpretation of (J¢ as truth in all ¥3-models is in tune
with this intuition.

9/21



The derivability conditions

For closed formulas ¢, we have:
1. PAF ¢ = PAF 0o,
. PAFO¢ — 0o,
CPAEO(¢ — ) — (O — Ov).
. NpEOp = PAF 4.

B~ W

If we had interpreted (¢ as “¢ is provable”, then 1 and 2 would
follow from the provable £9 completeness of PA.

In the new interpretation of (g as “¢ is true in all £3-models” we
must follow a different approach which we discuss below.
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A model inside a model

Let X’ be a model of PA with domain X = N (not necessarily
a ¥9-model). Given y € X such that X = MODEL(y), there
is a model ¥y = PA such that, for all pairs (¢, s) we have

Yy b olsl <= Xy ol

If X is a Zg—model, then so is Xy and there is a function
x,y = Xy of complexity M which computes a code of ¥y
given y and a code x for X’. So we have, provably in PA,

Yy ols] <= x "y = 9ls]"
for all x, y satisfying MODEL(x) and “x = MODEL(y)".
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Missing details

All the above “can obviously be done”, but to actually do it requires
some care because we are dealing with three kinds of objects:

e A formula ¢ is a description: it has a different meaning in
different models.

® A parameter is not a description: 2 means 2, not 1 + 1.
e A formula with parameters consist of a formula and a
description of a sequence of parameters.

If we are dealing with formulas with a non-standard number of
parameters, passing this information from a model to a model M
inside the model requires (roughly) three different functions:

® x> X (parameters, names, rigid designators),
® x — x (numerals, formulas, descriptions),
® x — [x, M] (sequences of parameters).

In quantified provability logic, one has formulas of the form
VxOA(x), but here it is more complicated.
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Proof of the derivability conditions

1. PAF ¢ = PAFO¢,
2. PA+ O¢ — 006,

3. PAFO(¢ — ¥) — (¢ — D).
4 NEOp = PAF ¢.

For 1 we use ¥y = 4fs] <= X ="y = ¢[s]".
For 2 we use *y [= ¢[s] <= x|="y |= ¢[s]".
3 is obvious.

Proof of 4:

if PA I/ ¢, there is a £9-model M = PA where ¢ fails.
A code m of M witnesses N = (.
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The existence of a ¥9-model is independent of PA

Let PAF G < -0G.

By the derivability conditions and the usual arguments, G is
independent of PA and PAF G < = L.
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Dialog with the editor
Editor: - the referee complained about the proof of condition
4. NlEOp = PAF ¢.
Authors: - Did they find a mistake?

Editor: - No, but they say that you used the fact that if a recursive
theory has a model, then it has a £3-model.

Authors: - Isn't this true? Just use Konig's lemma to find a
AJ-path in the tree of finite consistent extensions with Henkin
constants.

Editor: - They say that this proof uses syntactic consistency, so it is
not model theoretic.

Authors: - But we only use it in the metatheory! Moreover, 4. is
only used for PA /0 L, not for PAL/ - L.

Editor: - Cool down. The referee was kind enough to provide some
bibliographical pointers, so maybe you can fix it.

Authors: - But there is nothing to be fixed! Damn it!
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Existence of ¥3-models

We want to show that if a recursive theory T has a model, then it
has a ¥9-model.

This can be derived proof-theoretically from the usual proof of the
completeness theorem based on Kénig's lemma (the left-most
branch is AJ), but we want a model-theoretic proof.

The idea is to construct models as limits of finite structures as in
Skolem (1922).

A nice way to formalize this is through Kripke's notion of
fulfilment. A variant of this is presented below.

Some complications arise because the theory has infinitely many
axioms and we want the elementary diagram of the model, not just
the atomic diagram, to be ¥9.
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Skolem 1922, Shelah 1982, Putnam 2000, Kripke...

An n-structure is a sequence of relational structures

M = (Mo, ..., M,) with M; a substructure of M;,.

Given M, i < n and ¢ with parameters from M;, we define:

M- 3xp =
M I-Vxp <=
MilFpnyp —
MIFpVvy <—
M- ¢ =

i=nVv3ae My, MTLIF ¢(a/x)
Vj>iVae M, M IF¢(a/x)

M- ¢ and M IF

M- ¢ or M IF 1)

M; = ¢ for ¢ atomic or negated atomic

Negations are only applied to atomic formulas.

Similarly we define an w-structure M = (M, : n < w) and put

M |- 3x¢ < Jae Miy1, ML I ¢(a/x)

M fulfils ¢ if M I+ ¢ where M; contains the parameters of ¢.

If i =0, write M I ¢.
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Properties of fulfillment
 is satisfiable if and only if it is n-fulfillable for each n. In fact:

e p-fulfillable for each n = w-fulfillable (compactness).
e w-fullfillable = satisfiable (in the union).
e satisfiable = w-fulfillable = n-fulfillable.

More formally:

(Mi:i<w)lko =  (Mo,...,Mp) - ¢
(Aﬂo, A4n7A4n+1)|F ¢ g (Aﬂoa 7A4n)|k ¢
(I\/IO,Ml,..., n) IF @ = (My,...,Mp)IF¢
(Mj i <w)lF o = U, MrE=¢
etc

Note that

UM 7= (M i <w) -
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Bounded n-structures

Let A be a finite set of formulas closed under subformulas.
Let M = (My,..., M,) be an n-structure.

We say that M is A-bounded if:
® |Mp| at most equal to the number of closed formulas in A
beginning with 3.
® |M; 1] is at most |M;| 4 c|M;|¥ where c is the number of
formulas in A beginning with 3 and k is the largest number of
free variables in any such formulas.

We say that M = (M, ..., M,) is a substructure of
N = (No, ..., N,) if M; is a substructure of N; for each i.

If » € A is fulfilled in an n-structure, then it is fulfilled in a
A-bounded n-substructure.
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Extending an n-structure

We want to prolong an n-structure, enlarge its domains and expand
the language.

Consider an n-structure M = (M, ..., M,) in a language L and an
n + k-structure (N, ..., N,1k) in a language L' D L.

(No, ..., Nnpyk) extends (Mo, ..., M,) if for each i < n, M; is a
substructure of Nj;.

(Mo, ..., M,) is initial if the domain of its last element M, has the
form {n € N | n < k} for some k € N.

Remark: every A-bounded n-structure is isomorphic to an initial
one (and there are finitely many such).
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n-fulfillable for each n = ¥5-Satisfiable

Let T be a recursively axiomatized L-theory.

Let T, be the conjunction of the first n-axioms of T and let L, C L
be the language of T,. Suppose that, for each n, T, is n-fulfillable.

Let F be the finitely branching tree whose nodes at level n are the
Th-bounded initial n-models (M, ..., M,) of T, which extend a
node at level n — 1.

The children of (Mo, ..., M,) are the T,11-bounded initial models
(No, ..., Np, Npt1) extending (Mo, ..., M,).

Then F is an infinite finitely branching recursive tree, so it has a
AY definable infinite branch.

The union of the models in that path is a model of T whose
atomic diagram is A3.

If T has effective elimination of quantifiers, the elementary diagram
is also A9. We can reduce to this case by expanding the language.
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