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Basics (1)
▶ Let ZF−∞ be ZF \ {Infinity} ∪ {¬Infinity}+ TC (where TC asserts that the

transitive closure of every set exists). It is well-known that ZF−∞ and PA
are essentially the same theory. They are definitionally equivalent (aka synonymous), i.e., they

have a common definitional extension, a notion that is stronger than bi-interpretability.

▶ We will use ZF±∞ to simultaneously refer to ZF and ZF−∞.
▶ We say "M is a model of set theory" if M |= ZF±∞. M = (M,E ), where

E ⊆ M2 and E = ∈M. So M is a directed graph with certain properties.
▶ M = (M,E ) is a standard model if E is well-founded (in the "real world”).

By Mostowski’s Collapse, M is well-founded iff M is isomorphic to a model
of the form (X ,∈) where ∈ is the "real" membership relation.

▶ Up to isomorphism, the only standard model of ZF−∞ is (Vω,∈).
▶ Even ZF + Con(ZF) cannot prove that ZF has a standard model. But if ZF

has at least one standard model, it has continuum-many nonisomorphic
standard models (using forcing).

▶ M = (M,E ) is nonstandard if it is not standard, i.e. E is ill-founded. By
compactness, every standard model has a nonstandard elementary extension.
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Basics (2)

▶ Given a model M of set theory, we use OrdM to denote the "ordinals" of
M, i.e., the set of m ∈ M such that M satisfies the formula expressing m is
transitive and ∈ is a (strict) linear order on the elements of m.

▶ More generally, for a definition φ of an object within ZF, we write φM for
the object in M satisfying φ.

▶ So we write ωM to denote the ω of M (i.e., the first nonzero limit ordinal
in the sense of M).

▶ And we write VM
α for the element a of M such that M |= a = VM

α (where
α ∈ OrdM).

▶ Proposition. Suppose M = (M,E ) is a model of set theory. M is
well-founded iff (OrdM,E ) is well-founded.
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Basics (3)

Suppose M and N are Lset-structures, and M ⊆ N (in the sense of model
theory, i.e., ∈M = ∈N ∩ M2). Let E = ∈M.

▶ For c ∈ M, ExtM(c) := {m ∈ M : mEc} = {m ∈ M : M |= m ∈ c}.
▶ Suppose c ∈ M. N fixes c if ExtM(c) = ExtN (c), and N enlarges c if

ExtM(c) ⊊ ExtN (c).

▶ Suppose X ⊆ M. X is said to be coded in M if X = ExtM(c) for some
c ∈ M.

▶ M = (M,E ) of ZF is ω-standard if (ExtM(ωM),E ) ∼= (ω,∈). If M is not
ω-standard, then we say that M is ω-nonstandard.

▶ Jargon practice. If M = (M,E ) is an ω-standard model of set theory, and
α ∈ OrdM, then the externally defined usual Tarskian satisfaction relation
for the structure (ExtM(Vα),E )

M is coded in M (assuming that elements of

ExtM(ωM) are identified with the corresponding elements of ω).
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The multiverse of models of set theory

▶ Gödel-Rosser incompleteness Theorem. Every consistent theory T with
a computably enumerable set of axioms there is a sentence φ such that
neither φ nor ¬φ is provable in T .

▶ Corollary. There are continuum-many completions of ZF±∞.

▶ Corollary. ZF±∞ has continuum-many countable nonstandard nonisomrphic
models.

▶ Theorem. If T is a consistent extension of ZF±∞ and κ is an infinite
cardinal, then T has 2κ nonisomorphic models of power κ.
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Logical types of extensions

Suppose L ⊇ Lset, and M and N are L-structures such that M ⊆ N .

(a) For a subset Γ of L-formulae, M is a Γ-elementary submodel of N (written
M ⪯Γ N ) if for all n-ary formulae γ ∈ Γ and for all a1, · · ·, an in M,

M |= γ(a1, · · ·, an) iff N |= γ(a1, · · ·, an).

(b) N is a conservative extension of M (written M ⊆cons N ) if for every
N -definable D (parameters allowed), M ∩ D is M-definable (parameters
allowed).

(c) N is a minimal elementary extension of M (written M ≺min N ) if M ≺ N
and there is no model K such that M ≺ K ≺ N .
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Geometrical types of Extensions

Suppose M and N are models of set theory, with M ⊆ N .
old = elements of M, new = elements of N \ M.

(a) M is cofinal in N (written M ⊆cof N ) if for every b ∈ N there is some
a ∈ M such that b ∈ ExtN (a). Every new element is a member of an old element.

(b) M∗ is the convex hull of M in N if M∗ =
⋃

a∈M

ExtN (a). So M∗ is the collection of

elements of N that are members of old elements.

(c) N end extends M (written M ⊆end N ) if N fixes every a ∈ M. End
extensions are also referred to in the literature as transitive extensions, and
in the old days as outer extensions. Old elements do not gain new members.

(d) N is a rank extension of N (written M ⊆rank N ) if for all a ∈ M and all
b ∈ N\M, N |= rank(a) ∈ rank(b). The rank of every new element is greater than the rank

of every old element.

(e) N is taller than M if there is some b such that M ⊆ ExtN (b). This is equivalent

to the existence of an “ordinal” in N that exceeds all the “ordinals" in M.
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Picture (an embedding)
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Picture (rank vs cof)
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Picture (Gaifman splitting)
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Basic examples
1. Using a simple compactness argument, every model M can be elementarily

extended to a model N such that N is taller than M.

2. If M |= ZFC (of any cardinality), and U is a nonprincipal ultrafilter in the
sense of M, and N = the internal ultrapower of M modulo U , then:

M ≺cons, cof N .

3. If U is κ-complete in the sense of M (for some cardinal κ of M), then N
fixes every element in ExtM(VM

κ ), and N enlarges κ.

4. If U is a Rudin-Keisler minimal ultrafilter, then additionally:

M ⪯min N .

5. If κ is a measurable cardinal of M, using a normal U we get:

M ≺cons, cof, min N .
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Elementary end extensions of models of ZF−∞

▶ Theorem (MacDowell-Specker 1959, Gaifman and Phillips early 1970s)

(a) Every model M of PA (equivalently: of ZF−∞) has a proper e.e.e. N .
(e.e.e. = elementary end extension)

(b) Moreover, N can be required to be a minimal and conservative
extension of M.
Corollary. Every model of ZF−∞ has an arbitrarily large κ-like e.e.e. (i.e., an

e.e.e. of size κ each proper initial segment of which is of size less than κ).
▶ For set theorists: The proof of the MacDowell-Specker uses a definable

ultrapower construction modulo an "iterable ultrafilter".
▶ In the context of set theory, ultrapowers were first used in the celebrated

1961 proof of Scott that shows that the existence of a measurable cardinal
contradicts the axiom V = L, at about the same time they were used by
Keisler in the investigation of weakly compact cardinals (Keisler proved that κ is

weakly compact iff for all X ⊆ Vκ, the model (Vκ,∈, X ) has an e.e.e.).
▶ For model-theorists: Gaifman reformulated the MacDowell-Specker in terms

of "definable types" and their iterations.
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Historical Break: Some Quotes

▶ Finite iterations of ultrapowers were developed by Frayne, Morel, and Scott.
The infinite iterations were introduced by Gaifman. Our presentation is a
simplification of Gaifman’s work. Independently, Kunen developed iterated
ultrapowers in essentially the same way as here, and generalized the
construction even further to study models of set theory and measurable
cardinals. Chang and Keisler, (Model Theory)

▶ Some trustworthy witnesses assert that the notion of definable types was not
introduced in 1968 by Shelah, but by Haim Gaifman, in order to construct
end extensions of models of arithmetic. Poizat (Course in Model Theory)

▶ There is a paradoxical link between Gaifman’s paper and stable first-order
theories: although the notion of definable type was introduced by Gaifman in
the study of PA, which is the most unstable theory, this notion turned out to
be a fundamental one for stable theories. Ressayre (JSL)

13 / 44



Gaifman Splitting for models of ZF

▶ Gaifman Splitting Theorem. Suppose M |= ZF, N is an Lset-structure
with M ⪯∆0 N , and M∗ is the convex hull of M in N . Then the
following hold :

(a) M ⪯cof M∗ ⪯
∆0,end N .

(b) If M ≺ N , then M ⪯cof M∗ ⪯end N .

▶ Definition and Remark.

1. N is a powerset-preserving end extension of M, written M ⊆P
end, if N

is an end extension of M that does not introduce any new subsets of
any a ∈ M

2. For models M and N of ZF we have:

M ⪯Σ1,end N =⇒ M ⊆P
end N =⇒ M ⊆rank N .
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Elementary end extensions of models of ZF
▶ Theorem (Keisler 1966). Every countable model of ZF±∞ has an e.e.e.

▶ The proof of the the above theorem uses the Omitting Types Theorem of
model theory (and takes advantage of the fact that the Collection Scheme is
provable in ZF±∞).

▶ Corollary. Every countable model of ZF±∞ has a proper e.e.e. that is
ω1-like (i.e., it is uncountable but every proper rank initial submodel of it is
countable).

▶ M has countable cofinality if there is an ω-sequence in OrdM that is
unbounded in OrdM.

▶ Theorem. (Keisler-Morley 1968) Every model M of ZF that has countable
cofinality has a proper e.e.e. of any prescribed cardinality.

▶ The proof of the above theorem uses the technology of indiscernibles, as well
as the Erdős-Rado Partition Theorem. The proof uses similar ideas as in the
proof of a theorem of Morley that states that if an Lω1,ω sentence has a
model of power ℶα for each α < ω1, then φ has arbitrarily large models.
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The analogy breaks

▶ Theorem. (Keisler-Silver early 1970s) If κ is the first inaccessible cardinal,
then (Vκ,∈) has no proper e.e.e.

▶ Remark. An e.e.e. of a model of ZF is a rank extension.

▶ Theorem (Kaufmann and E. mid 1980s)

(a) No model of ZFC has a conservative proper e.e.e.

(b) Every consistent extension of ZFC has a model M of power ℵ1 such
that M has no e.e.e.

Remark. The above theorem remains true if ZF is replaced with ZF(L) for
finite L ⊇ Lset, and "e.e.e." is modified to L-elementary end extension.
Remark. As we shall see in the second part of the talk, ZFC can be
weakened to ZF in the above Theorem.
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A combinatorial explanation

▶ Theorem. (Essentially König 1927) ZF−∞ can prove that every definable
subtree of the binary tree of height Ord has a definable unbounded branch
(as a scheme).

▶ Theorem. (E. 2001, E. and Hamkins 2018) There is a LZF-formula τ that,
provably in ZFC defines a subtree of the binary tree of height Ord with the
property: NO definable branch of τM that has height Ord is definable in M.
Thus ZFC proves that Ord is not definably weakly compact.
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How to help ZFC catch up with ZF−∞

▶ For an ordinal α, the α-Mahlo cardinals are defined recursively as follows:
1. κ is 0-Mahlo if κ is strongly inaccessible;
2. For α = δ+ 1, κ is α-Mahlo if {γ < κ : γ is δ-Mahlo} is stationary in κ;
3. For limit α, κ is α-Mahlo if κ is δ-Mahlo for all δ < α.

▶ Levy Scheme: Λ := {(∃κ(κ is n−Mahlo and Vκ ≺Σn V ) : n ∈ ω} .
▶ Theorem (Kaufmann and E. late 1980s) The following are equivalent for a

completion of T of ZFC:

(a) There is a consistent extension T ∗ of T in a countable language
L+ ⊇ LZF such that ZFC(L+) ⊆ T ∗ and every model of T ∗ has a proper
conservative e.e.e.

(b) Λ is provable in T .

▶ SLOGAN: ZFC + Λ is the weakest extension of ZFC that allows infinite set
theory to model-theoretically imitate finite set theory! The following
theorem goes far in explaining this phenomenon.

▶ Theorem (E. 2004, 2022) ZFC + Λ is precisely what
GBC + “Ord is weakly compact” knows about V.
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Main results of my recent arXiv paper
▶ Theorem A. Every model M of ZF+∃p (V = HOD(p)) has a conservative

elementary extension N that contains an ordinal above all of the ordinals of
M. This theorem is an analogue of the MacDowell-Specker theorem for set theory.

▶ Theorem B. If N is a conservative elementary extension of a model M of
ZFC, and N has the same natural numbers as M, then M is cofinal in N .
In contrast, for models of ZF−∞, conservative elementary extensions are always end extensions

▶ Theorem C. Suppose M and N are models of ZF, and M ⊊end,faithful N .
Then there is some γ ∈ OrdN \OrdM such that M ⪯ Nγ . Thus either N
is a topped rank extension of M, or M ≺ Nγ .
N is a faithful extension of M if for every N -definable D, M ∩ D is M-amenable, i.e. (M,M ∩ D) satisfies

ZF in the extended language. This theorem plays a key role in the proof (obtained in collaboration with

Mateusz Łełyk) that there is a schematic presentation of ZF that is strongly internally categorical (in

constrast with the usual axiomatization of ZF).

▶ Theorem D. Every consistent extension of ZF has a model M of power ℵ1
such that M has no proper end extension to a model of ZF.
This theorem answers a question posed in my 1984 doctoral thesis. Back then, it had just been shown that

the above holds with "end extension" strenghened to "rank extension".
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Warm-up: building e.e.e.s with ultrapowers (1)
Theorem. Every countable model M of ZF−∞, or of ZFC has a proper e.e.e.

Proof: Models of ZF−∞ carry a definable well-ordering. In case M is a model of ZFC that has no definable

global well ordering, we can work with (M, ◁), where ◁ is a generic global well-ordering.

Let 𝔹 be the Boolean algebra of all M-definable subsets of M, F be the
collection of all M-definable functions from M to M, and F0 be the collection of
all f ∈ F such that the range of f is bounded (and therefore coded) in M.
Fix an enumeration ⟨fn : n ∈ ω⟩ of F0. By a simple recursion one can construct
S0 ⊇ S1 ⊇ · · · such that Sn ∈ 𝔹, Sn is unbounded in M, and fn is constant on Sn.
Let U0 consist of elements of 𝔹 whose complements are bounded (and therefore
coded)in M. It is easy to show that {Sn : n ∈ ω}∪ U0 uniquely extends to a
nonprincipal ultrafilter U over 𝔹.

For f and g in F define: f ∼ g ⇐⇒ {m ∈ M : f (m) = g(m)} ∈ U .
It is easy to see that ∼ is an equivalence relation. Let M∗ := F/ ∼ . So each
member of M∗ is the ∼-equivalence class [f ] of some f ∈ F . For [f ], [g ], and [h]
in M∗, define ∈M∗ by

[f ]∈M∗ [g ] = [h] ⇐⇒ {m ∈M M : f (m) ∈ g(m)} ∈ U .
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Warm-up: building e.e.e.s with ultrapowers (2)
For each m ∈ M, let cm : M → {m} be the constant m-function. This defines an
embedding j from M into M∗ given by m 7−→j [cm].
Łoś-style Theorem. Suppose LZF-formula φ(x0, · · ·, xk−1) and [f0], · · ·, [fk−1]
are elements of M∗. Then we have:

M∗ ⊨ φ([f0], · · ·, [fk−1]) ↔ {m ∈ M : M ⊨ φ(f0(m), · · ·, fk−1(m))} ∈ U .
Proof: Routine induction of the complexity of φ, for the existential step case the
global well-ordering is used. □

Therefore the mapping j is an elementary embedding, i.e., j(M) ⪯ M∗. Since
the equivalence class of the identity function i(m) = m is not in the range of j
(since U0 ⊆ U), this shows that M∗ ̸= M. To see that M∗ end extends M,
suppose M∗ ⊨ [f ] < [cm0 ] for some f ∈ M∗ and m0 ∈ M. Then by the Łoś-style
Theorem, we have

X︷ ︸︸ ︷
{m ∈ M : M ⊨ f (m) < m0}∈ U .

Let f ′(m) := f (m) if m ∈ X , and otherwise f ′(m) := 0. Note that [f ′] = [f ].
Moreover, f ′ ∈ F0 and therefore f ′ = fk for some k ∈ ω, which in turn implies
(by design) that f

′
is constant on Sk with some value m1 ∈ M. So [f ] = [cm1 ].22 / 44



An analogue of MacDowell-Specker for ZF (1)
Theorem A. Every model M of ZF + ∃p (V = HOD(p)) of any cardinality has
a conservative elementary extension N such that N is taller than M.

We shall present two proofs of this theorem:
▶ The first proof is based on a model-theoretic argument that is reminiscent of

the ultrapower proof of the McDowell-Specker theorem. The second proof is
short and devilish. The first proof is a bit longer but is more transparent due
to its combinatorial flavor. The first proof (but not the first one) yields the
following:
Theorem A+. Every model M of ZF + ∃p (V = HOD(p)) of any
cardinality has a conservative elementary extension N such that N is taller
than M and we furthermore have:

M ≺cof, cons M∗ ≺end, min N .

▶ The second proof is based on a class-sized syntactic construction taking
place within a model of set theory; it was inspired by Kaufmann’s proof of
the MacDowell-Specker theorem using the Arithmetized Completeness
Theorem.
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The first proof of Theorem A (1)
Given M |= ZF + ∃p (V = HOD(p)) we can construct an ultrafilter U over the
M-definable subsets of OrdM satisfying the following properties:

(1) Every member of U is unbounded in OrdM.

(2) Given any M-definable f : OrdM → M, there is a class X ∈ U such that
either f ↾ X is one-to-one, or the range of f ↾ X is a set (as opposed to a class).

(3) Given any n ∈ ω, the family Un = {X ∈ U : X is Σn-definable in M} is
M-definable in the sense that there is a parametric formula ψn(α, β) such that:

X ∈ Un iff ∃α ∈ OrdM X = {β ∈ OrdM : M |= ψn(α, β)}.

We will build U in ω × OrdM stages in the following sense: for each n ∈ ω and
α ∈ OrdM we shall employ external recursion on n and an internal recursion on
α to a parametrically M-definable Xn,α ⊆ OrdM, and then we can define U as:

U = {Xn,α : n ∈ ω, α ∈ OrdM} ∪ U−1,

where U−1 is the collection of co-bounded subsets of OrdM.
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The first proof of Theorem A (2)

{Xn,α : n ∈ ω, α ∈ OrdM} can be visualized as the following ω × OrdM matrix:

X0,0 X0,1 X0,2 . . . X0,α . . .
X1,0 X1,1 X1,2 . . . X1,α . . .
X2,0 X2,1 X2,2 . . . X2,α . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
Xn,0 Xn,1 Xm,2 . . . Xn,α . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .


.

The matrix is constructed row-by-row in ω-steps (external induction), each row is
built in OrdM-steps (internal transfinite induction in the sense of M).
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The second proof of Theorem A (1)

We need the following two Facts 1 and 2 below.

FACT 1: Suppose M is a model of ZF that carries an M-definable global
well-ordering, and T is an M-definable class of first order sentences such that M
satisfies “T is a consistent first order theory ”. Then there is a model N |= T st

such that the elementary diagram of N is M-definable, where T st is the
collection of sentences in M with standard shape (i.e., formulae that can be
obtained within M from a standard formula ψ by substituting constants from M
for the free variables of ψ).

Proof of Fact 1. Since M has a definable global well-ordering, the Henkin proof
of the completeness theorem of first order logic can be applied within M to
construct a Henkinized complete extension THenkin of T (in a language extending
the language of T by class-many new constant symbols) such that THenkin is
definable in M. This in turn allows M to define N by reading it off THenkin, as
in the usual Henkin proof of the completeness theorem.
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The second proof of Theorem A (2)

FACT 2: If M |= ZF, then for each n ∈ ω M |= Con(ThΠn(V ,∈, ca)a∈V); here
Con(X) expresses the formal consistency of X, and ThΠn(V ,∈, ca)a∈V is the
Πn-fragment of the elementary diagram of the universe, which is available in ZF
by a theorem of Levy.

Proof of Fact 2. This is an immediate consequence of the Reflection Theorem.
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The second proof of Theorem A (3)

Starting with a model M of ZF + ∃p (V = HOD(p)) , so M carries a global
definable well-ordering. We will construct an increasing sequence of
Lset-structures ⟨Nk : k ∈ ω⟩ that satisfies the following properties for each k ∈ ω:

(1) N0 = M.

(2) M ≺Πk+2 Nk ⪯Πk+1 Nk+1.

(3) There is an ordinal in N1 that is above all of the ordinals of M.

(4) Nk is a conservative extension of M.

Thus

M = N 0 ⪯Π1, cons, taller N1 ⪯Π2, cons N2 ⪯Π3, cons N3, cons · ·· and

for each k ∈ ω, M ⪯Πn+2, cons Nk .

This shows that with the choice of N :=
⋃
n∈ω

Nn, we have M ≺cons N ; and N is

taller than M.
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Theorem B+

▶ M ⪯∆P
0
N means M ⪯∆0 N and x = P(y) is absolute between M and N .

▶ Theorem B+. Suppose M and N are both models of ZFC such that
M ≺∆P

0 , faith N , N fixes ωM, and N is taller than M. Then:

(a) There is some γ ∈ OrdN such that M ⪯ Nγ .

(b) There is a satisfaction class S for M such that S can be written as
D ∩M, where D is N -definable. By (a) and Tarski’s definability of truth.

▶ Corollary (Theorem B). A conservative elementary extension of a model of
ZFC that fixes ωM is a cofinal extension. By (b) above and Tarski’s undefinability of truth.
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Proof of Theorem B+ (1)
Fix some λ ∈ OrdN \OrdM and some limit N -ordinal β > λ. Within N , thanks
to the availability of AC in N , we can let ◁ be a well-ordering of V β , and then
for each m ∈ M, we can define the following set Km (again within N ) as:

Km := {a ∈ Vβ : N |= a ∈ Def(V β ,∈,◁, λ,m)},

where x ∈ Def(V β ,∈,◁, λ,m) is shorthand for the formula of set theory that
expresses:

x is definable in the structure (V β ,∈,◁, λ,m).

Thus, intuitively speaking, Km consists of elements a of Nβ such that N thinks
that s is first order definable in (V β ,∈,◁, λ,m)M. Clearly Km is coded in N .
Next we move outside of N and define K as follows:

K :=
⋃

m∈M

Km.

Let K be the submodel of N whose universe is K .
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Picture of the proof of Theorem B+
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Proof of Theorem B+ (2)
Using the Tarski test for elementarity (with the help of ◁) we have:

(2) M ⊊ K ⪯ Nβ .

By putting (1) and (2) together we have:

(3) M ≺∆P
0
K ⪯ Nβ ≺∆P

0
N .

Let O∗ be the collection of ‘ordinals’ of K that are above the ‘ordinals’ of M.
Clearly O∗ is nonempty since λ ∈ O . We now consider the following two cases.
As we shall see, Case I leads to the conclusion of the theorem, and Case II is
impossible.

Case I. O∗ has a least ordinal (under ∈K).

Case II. O∗ has no least ordinal.

Suppose Case I holds and let γ0 = min(O∗). Clearly γ0 is a limit ordinal of N .
By the choice of γ0, OrdM is cofinal in OrdKγ0 . Since (3) implies that
VM

α = VK
α for each α ∈ OrdM, we conclude:

(4) M ⪯∆P
0 , cof Kγ0 .
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Proof of Theorem B+ (3)
Since Kγ0 is the convex hull of M in K, by Gaifman Splitting Theorem, (4)
shows that:

(5) M ⪯ Kγ0 .

On the other hand since by (3) K ⪯ Nβ , we have:

(6) Kγ0 = VK
γ0

⪯ VNβ
γ0 = VN

γ0
= Nγ0 .

By (5) and (6), M ⪯ Nγ0 , as desired. So Case I leads to the desired conclusion. We will show that

Case II is impossible. Within N let sβ be the Tarskian satisfaction class for (Vβ ,∈),
and let Φ :=

⋃
m∈M

Φm, where Φm is :

{x ∈ M : N |= x is (the code of) a formula φ(c , cm) such that φ(cλ, cm) ∈ sβ}.

So intuitively speaking, Φ is the result of replacing cλ by c (where c is a fresh constant) in the sentences in the

elementary diagram of Nβ (as computed in N ) whose constants are in {cλ} ∪ {cm : m ∈ M}. Since N need not be

ω-standard, the elements of Φ might be nonstandard formulae.

Since N is a faithful extension of M, Φ is M-amenable. Next let
Γ := {t(c , cm) ∈ M : t(c , cm) ∈ Φ and ∀θ ∈ Ord (t(c , cm) > cθ) ∈ Φ} ,
where t is a definable term in the language Lset ∪ {c} ∪ {cm : m ∈ M}.
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Proof of Theorem B+ (4)
Note that Γ is definable in (M,Φ). Since we are considering Case II,
(M,Φ) |= ψ, where:

ψ := ∀t (t ∈ Γ −→ [∃t ′ ∈ Γ ∧ ((t ′ ∈ t) ∈ Φ)]) .

The veracity of the dependent choice scheme in M in models of ZFC (thanks to
the Reflection Theorem), together with the facts that Φ is M-amenable and Γ is
definable in (M,Φ) make it clear that there is a sequence s =

〈
tn : n ∈ ωM〉

in
M such that:

(M,Φ) |= ∀n ∈ ω [tn ∈ Γ ∧ ((tn+1 ∈ tn) ∈ Φ)] .

Since s is a countable object in M, and N fixes ωM by assumption, s is fixed in
the passage from M to N . On the other hand, since N has a satisfaction
predicate sβ for Nβ , this leads to a contradiction because we have:

N |=
〈
t
(Vβ ,∈)
n (cλ) : n ∈ ω

〉
is an infinite decreasing sequence of ordinals.

In the above tn(cλ) is the term obtained by replacing c with cλ in tn, and
t
(Vβ ,∈)
n (cλ) is the interpretation of tn(cλ) in (Vβ ,∈).This concludes the proof of Theorem B+.

34 / 44



Theorem C and Theorem D−

▶ Theorem C. Suppose M and N are models of ZF, and M ⊊end,faithful N .
Then there is some γ ∈ OrdN \OrdM such that M ⪯ Nγ . Thus either N
is a topped rank extension of M, or M ≺ Nγ .

▶ Theorem C is established with the same proof strategy as Theorem B+, but
due to absence of AC, one needs to work harder.

▶ Theorem D−. No model of ZF has a conservative proper end extension
satisfying ZF.

▶ Proof. Put part (b) of Theorem C together with Tarski’s Undefinability of
Truth Theorem.
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Towards Theorem D (1)
Definition. Suppose M is an Lset-structure.

(a) X ⊆ M is piecewise-coded in M if
∀a ∈ M ∃b ∈ M ExtM(b) = X ∩ ExtM(a).

(b) M is rather classless iff every piecewise-coded subset of M is M-definable.

(c) M is ℵ1-like if |M| = ℵ1 but |ExtM(a)| ≤ ℵ0 for each a ∈ M.

Theorem. (Keisler-Kunen 1974, Shelah 1980) Every countable model of ZF has
an elementary end extension to an ℵ1-like rather classless model.

Theorem. No rather classless model of ZF has a proper rank extension to a
model of ZF.

Proof. This follows from putting Theorem D− together with the observation that
a rank extension of a model of ZF is a conservative extension. □

Remark. it is possible for a rather classless model to have a proper end extension
satisfying ZF, since ℵ1-like rather classless models exist by the above theorem,
and one can use the Boolean-valued approach to forcing to construct set generic
extensions of such models.
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Towards Theorem D (2)
Definition. A ranked tree τ is a two-sorted structure τ = (T , ≤T , L, ≤L, ρ)
satisfying the following three properties:

(1) (T , ≤T ) is a tree, i.e., a partial order such that any two elements below a
given element are comparable.

(2) (L, ≤L) is a linear order with no last element.

(3) ρ is an order preserving map from (T , ≤T ) onto (L, ≤L) with the property
that for each t ∈ T , ρ maps the set of predecessors of t onto the initial segment
of (L, ≤L) consisting of elements of L that are less than ρ(t).

Definition. Suppose τ = (T , ≤T , L, ≤L, ρ) is a ranked tree. A linearly ordered
subset B of T is said to be a branch of τ if the image of B under ρ is L. The
cofinality of τ is the cofinality of (L, ≤L).

Definition. Given a structure M in a language L, we say that a ranked tree τ is
M-definable if τ = tM, where t is an appropriate sequence of L-formulae whose
components define the corresponding components of τ in M. M is rather
branchless if for each M-definable ranked tree τ , all branches of τ (if any) are
M-definable.
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Towards Theorem D (3)
Theorem. Suppose M is a countable structure in a countable language.

(a) (Keisler-Kunen 1974, essentially). It is a theorem of ZFC + ♢ω1 that M can
be elementarily extended to a rather branchless model.

(b) (Shelah 1978). It is a theorem of ZFC that M can be elementarily extended
to a rather branchless model.

Definition. In what follows (P,≤P) is a poset.
▶ (P,≤P) is is directed if any pair of given elements of P has a ≤P -upper

bound. Clearly every finite subset of a directed set has an upper bound.
▶ A subset F of (P,≤P) is a prefilter over (P,≤P) if the sub-poset (F ,≤P) is

directed. F is maximal prefilter over (P,≤P), is if it cannot be properly
extended to a filter over (P,≤P).

▶ A subset C of (P,≤P) is cofinal in (P,≤P) if ∀x ∈ P ∃y ∈ C y ≤P x .

Definition. Suppose s is an infinite set.

(a) [s]<ω is the directed poset of finite subsets of s, ordered by containment.

(b) Fin(s, 2) is the poset of finite functions from s into {0, 1}, ordered by
containment.
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Towards Theorem D (4)
Example. Given an infinite set s, and a ⊆ s, let χa : s → 2 be the characteristic
function of a, i.e., χa(x) = 1 iff x ∈ a. Let Fa be the set of finite approximations
to χa. Fa is a maximal filter of Fin(s, 2).

Definition. A structure M is a Rubin model if it has the following two properties:

(a) Every M-definable directed set with no maximum element has a cofinal chain
of length ω1.

(b) Given any M-definable poset P, and any maximal prefilter F ⊆ P, if F has a
cofinal chain of length ω1, then F is coded in M.

Remark. If τ = (T , ≤T , L, ≤L, ρ) is a ranked tree, then each branch of τ is a
maximal filter over (T , ≤T ). This makes it clear that every Rubin model is rather
branchless. Also, a rather branchless model of ZF is rather classless. To see this
consider the ranked tree defined within a model M of ZF as follows: The nodes
of τ are ordered pairs (s, α), where s ⊆ Vα, the rank of (s, α) is α and
(s, α) < (t, β) if α ∈ β and s = t ∩ Vα. It is easy to see that M is rather
classless iff every branch of τM is M-definable. Hence we have the following
chain of implications: Rubin ⇒ rather branchless ⇒ rather classless.
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Towards Theorem D (5)
Theorem. (Rubin 1980). It is a theorem of ZFC+ ♢ω1 that if M is a countable
structure in a countable language, then M has an elementary extension of
cardinality ℵ1 that is a Rubin model.

Definition. Suppose M is a model of ZF. M is weakly Rubin if (a) and (b)
below hold:

(a) M is rather classless.

(b) For every element a of M that is infinite in the sense of M we have:

(i) ([a]<ω)
M has a cofinal chain of length ω1.

(ii) If F is a maximal prefilter of FinM(a, 2) and F has a cofinal chain of length
ω1, then F is coded in M.

Theorem (Rubin-Schmerl) It is a theorem of ZFC that every countable model of
ZF has an elementary extension to a weakly Rubin model of cardinality ℵ1.

Using Schmerl’s strategy of ♢ω1 -elimination (2000), an absoluteness theorem of Shelah (1978) can be invoked so as
to eliminate the ♢ω1 hypothesis in building weakly Rubin models.
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Theorem D (1)

Theorem. Every countable model M0 |= ZF has an elementary extension M of
power ℵ1 that has no proper end extension to a model N |= ZF. Thus every
consistent extension of ZF has a model of power ℵ1 that has no proper end
extension to a model of ZF.

We begin with a basic fact that will be called upon in the proof.

Fact (∇) . Suppose M |= ZF and N |= ZF with M ⊆end N , and a ∈ M. If
s ∈ N such that s is finite as viewed in N and N |= s ⊆ a, then s ∈ M. Thus for
all a ∈ M, we have:

(
[a]<ω)M =

(
[a]<ω)N

.
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Theorem D (2)

Given a countable model M0 of ZFC, by the Rubin-Schmerl Theorem there is a
weakly Rubin model M that elementary extends M0. By Theorem D−, the proof
will be complete once we verify that that every end extension N of M that
satisfies ZF is a conservative extension.

Towards this goal, suppose M ⊊end N |= ZF. The proof will be complete if we
could show that M ≺∆P

0
N since this would assure us in that for each

α ∈ OrdM, we have:

VM
α = VN

α ,

The above shows that N is a proper rank extension of M since OrdM is an initial
segment of OrdN by the assumption that N is an end extension of M. But since
M is rather classless, we can deduce that N is also a conservative rank extension
of M (recall: rank extensions of rather classless models are conservative).
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Theorem D (3)
Note that M ≺∆0 N since N end extends M, so we just need so show that
x = P(y) is absolute between M and N . Suppose for a ∈ M and s ∈ N, M,
N |= s ⊆ a for some a ∈ N. We will show that s ∈ M. By Fact (∇) we may
assume that a is infinite in M. Note that this implies that M views [a]<ω as a
directed set with no maximum element. Also, Fact (∇) assures us that:

(∗) ∀m ∈ M ([m]<ω)
M

= ([m]<ω)
N
, and

Since Fin(m, 2) ⊆ [m × {0, 1}]<ω, (∗) implies:

(∗∗) ∀m ∈ M FinN (m, 2) = FinM(m, 2).

Let χs ∈ N such that N satisfies χs : a → {0, 1} and
∀x ∈ a(x ∈ s ↔ χs(x) = 1). Let Fs = ([χs ]

<ω)N .

Fs is a maximal prefilter over FinN (a, 2), so by (∗∗) Fs is a maximal filter over
FinM(a, 2). The directed set ([a]<ω)

M has a cofinal chain ⟨pα : α ∈ ω1⟩ thanks
to the assumption that M is weakly Rubin. Together with (∗), this readily
implies that Fs has a cofinal chain ⟨qα : α ∈ ω1⟩ , where qα := χs ↾ pα.
Therefore, by the assumption that M is weakly Rubin, Fs is M-definable. In light
of the fact that χs = ∪Fs , this makes it clear that s ∈ N, which concludes the
proof of Theorem D.
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Some Open Questions and Gratitude

▶ If a model M of ZFC has a taller conservative elementary extension, does
M have to satisfy ∃p(V = HOD(p))?

▶ Can ZFC be reduced to ZF in Theorem B?

▶ Does every consistent extension of ZF that has an ω-standard model have
an ω-standard model M that cannot be properly end extended to a model
of ZF?

THANKS FOR YOUR ATTENTION!
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