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Outline

PART 1 revisits Tarski’s Undefinability of Truth (TUT), as originally
presented in the following.

Andrzej Mostowski, Raphael Robinson, Alfred Tarski, Decidability and
Essential Undecidability in Arithmetic, in Undecidable Theories,
North Holland, Amsterdam, 1953.

Alfred Tarski, Two general theorems on undefinability and
undecidability, Bulletin of American Mathematical Society
(1953), pp. 365-366.
PART 2 reports on the following paper in which TUT together with
partial definable truth predicates join hands to deliver new
incompleteness theorems.

Ali Enayat and Albert Visser, Incompleteness of boundedly
axiomatizable theories, arXiv:2311.14025 [math.LO]
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Three relevant subtheories of PA
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Semantic form of TUT

Let L be a language (signature), and M be an L-structure. Also let
φ 7→ #(φ) ∈ M is an arbitrary mapping of unary L-formulae into M.

Theorem. (Semantic Form of TUT) There is no binary L-formula T (x , y)
such that for all unary L-formulae: M |= ∀x (T (x ,#(φ))↔ φ(x)) .

Proof. Suppose not and consider R(x) = ¬T (x , x). Then:
(1)M |= ∀x (T (x ,#(R))↔ R(x)) . If r := #(R), by (1) and the definition
of R we obtain:
(2)M |= T (r , r)↔ R(r)↔ ¬T (r , r), contradiction. □

The above proof is reminiscent of the proof of Russell’s Paradox (1901), and
of the proof of Cantor’s theorem (1891) on nonexistence of a surjection of a
set X onto P(X ).
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Kripke’s formulation of Cantor’s Theorem

Source: p.66 of Kripke’s Lecture Notes on Elementary Recursion Theorem, Princeton, 1996
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Semantic form of TUT, cont’d

Let Formn
L = the set of n-ary L-formulae, and supposeM is an L-structure

with a pairing function ⟨·, ·⟩. Also assume that the coding φ 7→ #(φ) ∈ M is
1-1. In this context, the (codes of) sentences in the elementary diagram of
M can be split into:

ED+(M) = {⟨#(φ), ⟨a1, ..., an⟩⟩ ∈ M :M |= φ(a1, ..., an), φ ∈ Formn
L},

ED−(M) = {⟨#(φ), ⟨a1, ..., an⟩⟩ ∈ M :M |= ¬φ(a1, ..., an), φ ∈ Formn
L}.

Corollary. (Inseparability of positive and negative fragments ED)
ED+(M) and ED−(M) are definably inseparable in M, i.e., there is no
M-definable D(parameters allowed) such that ED+(M) ⊆ D and
ED−(M) ∩ D = ∅.

6 / 29



Semantic form of TUT, concluded

Corollary. (Incompleteness of PA)
Let TA = {#(φ) : (ω,+, ·) |= φ, φ ∈ SentLPA := Form0

LPA
}.

TA is not definable in (ω,+, ·).
In particular, TA is not axiomatizable by a subtheory of itself the set of
whose #-codes is definable in (ω,+, ·). Hence PA is incomplete.
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Syntactic Formulation of TUT

Let T be an L-theory, and suppose n 7→ 𝕟 be an arbitrary mapping of ω
(natural numbers) into the set of closed L-terms (terms with no free
variables).

Fix an arbitrary 1-1 correspondence φ 7→ #(φ) between Form≤1
L and ω, and

let n 7−→ φn be its inverse.

The diagonal function δ : ω → ω is given by

δ(n) = #(φn(𝕟)).

A function f : ω → ω is said to be T -definable if there is an L-formula
θ(x , y) such that

∀n ∈ ω T ⊢ ∀y [θ(𝕟, y)↔ y = 𝕗(𝕟)] .

A subset P of ω is said to be T -definable if there is an L-formula ψ(x) such
that:

∀n ∈ P T ⊢ ψ(𝕟) and ∀n /∈ P T ⊢ ¬ψ(𝕟).
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Syntactic Formulation of TUT (cont’d)

Theorem 1. (Syntactic formulation of TUT, ver 1.)
Given a theory T , let VT = {#(φ) : T ⊢ φ}. Assuming that T is consistent,
then the diagonal function δ and the set VT are not both T -definable.

Corollary. (Syntactic formulation of TUT, ver. 2).
If T is a consistent L-theory such that δ is T -definable, then there is no
L-formula θ(x) such that for all L-sentences φ we have:

T ⊢ φ↔ θ(𝕟), where n = #(φ).

Corollary. If T is a consistent theory such that all total recursive functions
are T -representable, and φ 7→ #(φ) is recursive, then VT is not recursive.
In particular, T is incomplete.

Remark. If T interprets Robinson’s R (let alone Robinson’s Q) , then
represents all total recursive functions are T -definable.
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Proof of version 1 of TUT
Suppose not, thus there are formulae θ and ψ such that the following hold:

(1) ∀n ∈ ω T ⊢ ∀y [θ(𝕟, y)↔ y = 𝕣 ], where δ(n) = r .
(2) ∀n ∈ VT T ⊢ ψ(𝕟).
(3) ∀n /∈ VT T ⊢ ¬ψ(𝕟).
Choose m ∈ ω such that φm(x) = ∀y (θ(x , y)→ ¬ψ(y)), hence:

(4) φm(𝕞) = ∀y (θ(𝕞, y)→ ¬ψ(y)) .
If T ⊢ φm(𝕞), then by (1) and (4) we have T ⊢ ¬ψ(𝕜), where δ(m) = k .

If T ⊬ φm(𝕞), then #(φm(𝕞)) /∈ VT ; and by the definition of δ,

(5) δ(m) = #(φm(𝕞)).

So by (3) in this case we can also conclude that T ⊢ ¬ψ(𝕜). Thus we have shown:

(6) T ⊢ ¬ψ(𝕜).
By (1) and (6), T ⊢ ∀y (θ(𝕞, y)→ ¬ψ(y)). So by (4) and (5) δ(m) ∈ VT and
therefore by (2),

(7) T ⊢ ψ(𝕜).
This contradicts the assumption of consistency of T .
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Tarski’s 1953 abstract
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Tarski’s assessment

For discussion on the history of TUT, see:

R. Murawski, Undefinability of truth; the problem of priority: Tarski vs Gödel, History and Philosophy of
Logic (1988), Vol. 19, 153–160.

J. Woleński, Gödel, Tarski and Truth, Revue Internationale de Philosophie (2005) Vol. 59, pp. 459–490.

(END OF PART 1)
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A Question of Lempp and Rossegger

PA− is the finitely axiomatized fragment of PA whose axioms describe the
non-negative substructure of discretely ordered rings (with no instance of the
induction scheme, hence the minus superscript).

Question. Is there a consistent completion of T = PA− that is axiomatized
by a set of sentences of bounded quantifier complexity?

The above question was posed by Steffen Lempp and Dino Rossegger in the
context of their recent joint work [AGLRZ] with Uri Andrews, David
Gonzalez, and Hongyu Zhu, in which they establish:
Theorem. The following are equivalent for a complete first-order theory T :
(1) The set of models of T is Π0

ω-complete under Wadge reducibility (i.e.,
reducibility via continuous functions).

(2) T does not admit a first-order axiomatization by formulae of bounded
quantifier complexity.
[AGLRZ] The Borel complexity of the class of models of first-order theories, arXiv:2402.10029[math.LO]
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Two relevant hierarchies of formulae
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Some background results (1)

Let ℕ be the standard model of PA. For T = TA = Th(ℕ) the answer to the
Lempp-Rossegger question is in the negative. This follows from the
Arithmetical Hierarchy Theorem of Kleene (1943) and Mostowski (1946)
that states that Σℕ

n ⊊ Σℕ
n+1 for each n ∈ ω.

For T = PA, the negative answer follows from a theorem of Rabin (1961)
that states that for each n ∈ ω no consistent extension of PA (in the same
language) is axiomatized by a set of Σn-sentences.

Rabin’s result refines an earlier theorem of Ryll-Nardzewski (1952) that
states that no consistent extension of PA is finitely axiomatizable.
Ryll-Nardzewski and Rabin both employed model-theoretic arguments relying
on nonstandard elements to prove the aforementioned results (Theorem
10.2 of Kaye’s Models of Peano Arithmetic offers a modern treatment).
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Some background results (2)

Rabin’s result can be also established with an argument that mixes
proof-theoretic machinery, partial satisfaction classes, and Gödel’s second
incompleteness theorem (see Theorem 2.36 of Chapter III of Hájek and
P. Pudlák’s Metamathematics of First Order Order Arithmetic).

As shown by Montague (1961) a similar result can be established for any
inductive sequential theory T , i.e., a sequential theory that has the power to
prove the full scheme of induction over its ‘natural numbers’ for all formulae
in the language of T . In the setting of Montague’s result the relevant
hierarchy is based on quantifier-alternations-depth.

Canonical examples of inductive sequential theories include all extensions of
PA, Z (Zermelo set theory), Z2 (second order arithmetic), and KM
(Kelley-Morse theory of classes).
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Sequential Theories

At first approximation, a theory is sequential if it supports a modicum of
coding machinery to handle finite sequences of all objects in the domain of
discourse. Gödel (1931) used the Chinese Remainder Theorem to show that
PA is sequential. Jeřábek (2012) showed that PA− is sequential, and Visser
(2008) showed that Q is not sequential.

It is known that T is sequential iff T has a definitional extension to
Adjunctive Set Theory. The original definition of sequentiality due to Pudlák
is as follows: A theory T is sequential if there is a formula N(x) (read as “x
is a number”) , together with appropriate formulae providing interpretations
of equality, and the operations of successor, addition, and multiplication for
elements satisfying N(x) such that T proves the translations of the axioms
of Q when relativized to N(x); and additionally, there is a formula β(x , i ,w)
(whose intended meaning is that x is the i-th element of a sequence w) such
that T proves that every sequence can be extended by any given element of
the domain of discourse.
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Surprising power of sequential theories
The definition of sequentiality is self-improving: the ‘numbers’ of a
sequential theory can be required to satisfy I∆0, thanks to a result of Wilkie
(1980s) that shows that Q can interpret I∆0 ‘on a cut’.

The following result was established by Visser (1993, 2019); this result
refines the work of Pudlák (1984, 1998) in which logical depth (length of the
longest branch in the formation tree of the formula) is used as a measure of
complexity instead of the depth of quantifier alternations complexity.

Fact F. Suppose T is a sequential theory T formulated in a finite language
L, and fix n ∈ ω. Fix some interpretation N of arithmetic in T satisfying
I∆0.
(a) There is a T -provable definable cut In of N and a formula Satn(x , y)
such that, provably in T , Satn satisfies the Tarskian compositional clauses if
x is a Σ∗

n-formulae in In (and for all variable assignments y). Therefore:

(b) There is a formula Truen(x) such that, provably in T, Truen(x) is
extensional, i.e., it respects the equivalence relation representing equality in
the interpretation N ; and for all models M |= T , and for all Σ∗

n-sentences
ψ, we have: M |= (ψ ↔ Truen(⌜ψ⌝)) .
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Commercial Break:Telegraphic History of Definable Partial
Truth Predicates:

Turing, Post, Kleene, Mostowski (1940s) – 0(n) is Σn-complete.
Mostowski (1952) – PA supports a definable truth predicate for
Σn-formulae.
Montague (1961) – Every inductive sequential theory supports a
definable truth predicate for Σ∗

n-formulae.
Levy (1965) – ZF supports a definable truth predicate for
ΣLevy
n -formulae.

Gaifman and Dimitracopoulos (1980) – I∆0 + Exp, supports a
definable truth predicate for Σn-formulae.
Pudlák (1984, 1998) – Every sequential theory supports a definable
truth predicate for Depthn-formulae.
Visser (1994, 2019) – Every sequential theory supports a definable
truth predicate for Σ∗

n-formulae.
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Theorem A

Theorem A. For any fixed n ∈ ω, every consistent sequential theory formulated
in a finite language that is axiomatized by a set of Σ∗

n-sentences is incomplete.

Proof of Theorem A. Suppose not, and let T be consistent completion of
sequential theory formulated in a finite language L. Then by the definition of
sequentiality T is also sequential. Suppose to the contrary that for some n ∈ ω,
T is axiomatized by a set of Σ∗

n sentences, i.e., suppose (1) below:

(1) For n ∈ ω, there is a set A of Σ∗
n sentences such that for all L-sentences ψ,

ψ ∈ T iff A ⊢ ψ.

Our proof by contradiction of Theorem A will be complete once we verify Claim
♡ below since it contradicts TUT.

CLAIM ♡. There is a unary L-formula φ(x) such that for all L-sentences ψ,
T ⊢ ψ ↔ φ(⌜ψ⌝).
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Theorem A (cont’d)
Since T is sequential, we can find an L-formula, denoted PrfTruen(π, x) such that
for each standard L-sentence ψ and standard π, and each modelM of T , we
have:

(2)M |= PrfTruen(π, ⌜ψ⌝) iff π is (a code for) a proof of ψ from

TrueMn := {φ :M |= Truen(⌜φ⌝)}.

Our proposed candidate of φ(x) for establishing Claim ♡ is the following formula
ρ(x); our choice of the letter ρ indicates the fact that the formula expresses
Rosser-provability (from the true Σ∗

n sentences).

ρ(x) := ∃y [PrfTruen(y , x) ∧ ∀z < y ¬PrfTruen(z ,¬x)] .

Thus our goal is to show that for all L-sentences ψ, T ⊢ ψ ↔ ρ(⌜ψ⌝). It suffices
to show that for each modelM of T , M |= ψ ↔ ρ(⌜ψ⌝). For the rest of the
proof, let M |= T . We will first show:

(3) For all L-sentences ψ, M |= ψ → ρ(⌜ψ⌝). To show (3), assume ψ holds in

M. Let n and A be as in (1), and note that A ⊆ TrueMn .
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Theorem A (concluded)
By the assumptions about T , there are finitely many sentences α1, ..., αn in A
such that {α1, ..., αn} ⊢ ψ. Let π0 ∈ ω be (the code of) a proof of ψ from
{α1, ..., αn} . Thanks to (2) we have: M |= PrfTruen(π0, ⌜ψ⌝). The assumption
of consistency of T coupled with (2) yields: M |= ∀z < π0 ¬PrfTruen(z , ⌜¬ψ⌝).
Hence (3) holds.

To complete the proof of CLAIM ♡, we need to show that M |= ¬ψ → ¬ρ(⌜ψ⌝)
for all L-sentences ψ. For this purpose assume M |= ¬ψ. By putting (1) and the
assumption thatM |= ¬ψ, we conclude that there is a standard proof π0 of ¬ψ
from TrueMn , which by (2) implies:

(4) For some π0 ∈ ω,M |= PrfTruen(π0, ⌜¬ψ⌝).

To see that M |= ¬ρ(⌜ψ⌝) suppose to the contrary thatM |= ρ(⌜ψ⌝). By the
choice of ρ, this means:

(5) For some m0 ∈ M, M |= PrfTruen(m, ⌜ψ⌝) ∧ ∀z < m0 ¬PrfTruen(z , ⌜¬ψ⌝).

The key observation is that putting (2) with the assumptionM |= ¬ψ allows us
to conclude that the m0 in (6) must be a nonstandard element of M. Thus by
standardness of π0 of (4) and the ordering properties of ‘natural numbers’ in M,
M |= π0 < m0, which contradicts the second conjunct of (5). □
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Theorem B

Theorem B. For each n ∈ ω every consistent extension of I∆0 + Exp (in the
same language) that is axiomatized by a set of Σn-sentences is incomplete.

Proof. As shown by Gaifman and Dimitracopoulos (1980) for each n ∈ ω there is
a formula SatΣn such that, provably in I∆0 + Exp, SatΣn satisfies compositional
clauses for all Σn-formulae. In particular there is a formula TrueΣn(x) such that
for all modelsM of I∆0 + Exp, and for all Σn-sentences ψ, ψ ∈ TrueMΣn

iff
M |= ψ. We can now repeat the proof strategy of Theorem A with the use of
TrueMΣn

instead of TrueMn .

Alternatively, invoke the provability of the MRDP theorem on the Diophantine
representability of computably enumerable sets in I∆0 + Exp (shown by Gaifman
and Dimitracopoulos in the aforementioned paper). By the MRDP-theorem each
Σn-formula is equivalent to a Σ∗

n-formula in I∆0 + Exp, so Theorem A applies. □

MRDP=Matijasevic-Robinson-Davis-Putnam
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A more general form of Theorem A

Theorem A+. Let T be a computably enumerable sequential theory formulated
in a finite language L and suppose A is a collection of L-sentences such that
A ⊆ Σ∗

n for some n ∈ ω and T ∪ A is consistent. Then T ∪ A is incomplete.

Remark 1. Note that if A = ∅, then the proof strategy of Theorem A, when
applied to the setting of Theorem A+, goes through for all computably
enumerable consistent extensions T of R, without the assumption of sequentiality
of T .

Remark 2. We can obtain an analogous following strengthening of Theorem B.
There is also an analogous theorem at work for set theories:

Theorem C. For each n ∈ ω every consistent extension of KP (Kripke-Platek set
theory) that is axiomatized by a set of ΣLevy

n -sentences is incomplete.
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Emil Jeřábek’s hit the same idea in 2016

SOURCE: A MATHOVERFLOW ANSWER BY EMIL (2016);

https://mathoverflow.net/questions/256785/a-completion-of-zfc
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Why L cannot be infinite (1)

Consider the theory U = CT−
ω [IΣ1] of ω-iterated compositional truth over

IΣ1 (without any induction for formulae using nonarithmetical symbols,
hence the minus superscript) formulated in an extension of the language LA
of arithmetic with infinitely many predicates {Tn+1 : n ∈ ω}, and
Tarski-style compositional axioms that stipulate that Tn+1 is compositional
for all Ln-formulae, with L0 = LA and Ln+1 = Ln ∪ {Tn+1}.

Since bi-conditionals of form φ←→ Tn+1(⌜φ⌝) are provable in U for every
Ln-sentence (thanks to the available composition axioms) ANY complete
extension V of U is axiomatized by U (which is of bounded complexity)
together with atomic sentences of form Tn+1(⌜φ⌝) where φ ∈ V and φ is an
Ln-sentence, thus U axiomatizable by a set of axioms of bounded quantifier
complexity.

By adding one axiom (internal induction) to the above theory we can get a
theory of bounded complexity whose deductive consequence includes PA,
and every completion of which is boundely axiomatizable.
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Why L cannot be infinite (2)

Alternatively, starting with any theory T formulated in a language L, we can
apply a process known in model theory as Morleyization/Atomization to
obtain an extension T+ of T , formulated in an extension L+ of L, such that
T+ is axiomatized by adding a collection of sentences of bounded quantifier
depth to T , and T+ has elimination of quantifiers in the sense that for each
L+-formula φ(x1, ..., xn), there is an n-ary predicate Pφ ∈ L+ such that the
equivalence φ(x1, ..., xn)↔ Pφ(x1, ..., xn) is provable in T+.
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Off Shoots

Question. Is it possible for a consistent completion of Q to be axiomatized
by a collection of sentences of bounded quantifier-depth? Conjecture: Yes.

In Theorem B, the theory I∆0 + Exp cannot be weakened to PA−, i.e., for
some n ∈ ω there is a consistent completion of PA− (in the same language)
that is axiomatized by single sentence together with a set of Σ1-sentences.
The proof of this and related results will appear in upcoming paper(s) with
Albert Visser and Mateusz Łełyk.

Albert Visser, in work in progress, studies the most basic forms of
Rosser-provability and its sibling FGH-provability. (FGH =
Friedman-Goldfarb-Harrington) under minimal demands on the
meta-language and on the object-language. His work also expands on Saeed
Salehi’s [S] who has shown that incompleteness for predicates with salient
properties are equivalent to their preconditions: roughly certain statements
of incompleteness theorems are equivalent to a weak version of the Fixed
Point Lemma.

[S] S. Salehi, A reunion of Gödel, Tarski, Carnap and Rosser, Journal of Logic and Computation (2023).
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Thanx!
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