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Outline

e PART 1 revisits Tarski's Undefinability of Truth (TUT), as originally
presented in the following.

Andrzej Mostowski, Raphael Robinson, Alfred Tarski, Decidability and
Essential Undecidability in Arithmetic, in Undecidable Theories,
North Holland, Amsterdam, 1953.

Alfred Tarski, Two general theorems on undefinability and
undecidability, Bulletin of American Mathematical Society
(1953), pp. 365-366.

@ PART 2 reports on the following paper in which TUT together with
partial definable truth predicates join hands to deliver new
incompleteness theorems.

Ali Enayat and Albert Visser, Incompleteness of boundedly
axiomatizable theories, arXiv:2311.14025 [math.LO]
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Three relevant subtheories of PA
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Semantic form of TUT

@ Let £ be a language (signature), and M be an L-structure. Also let
© — #(p) € M is an arbitrary mapping of unary £-formulae into M.

@ Theorem. (Semantic Form of TUT) There is no binary L-formula T(x,y)
such that for all unary L-formulae: M |=Vx (T (x,#(p)) < o(x)).

Proof. Suppose not and consider R(x) = =T (x, x). Then:

(1) M EVx(T (x,#(R)) < R(x)). If r:=#(R), by (1) and the definition

of R we obtain:

(2) M= T(r,r) <> R(r) <> =T(r,r), contradiction. O
@ The above proof is reminiscent of the proof of Russell's Paradox (1901), and

of the proof of Cantor's theorem (1891) on nonexistence of a surjection of a
set X onto P(X).
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Kripke's formulation of Cantor's Theorem

A relation is called arithmerical if it is definable in L. the language of arithmetic. Since L
contains RE. it follows that all r.e. relations are arithmetical. Also. since L contains negation.
it follows that all complements of r.e. relations are arithmetical. That L contains negation
also implies that the enumeration theorem fails for arithmetical sets. i.e. there is no
arithmetical relation that enumerates all the arithmetical relations: similarly. there is no
recursive relation that enumerates all the recursive relations.

The best way to see this is by proving a general theorem. As in the enumeration
theorem for r.e. sets, if R is a two-place relation, we write Ry for {y: R(x.y)}. We give the
following

Definition: Let X be a set. F be a family of subsets of X. and R a two place relation
defined on X. R is said to supermumerate F iff for any S e F. there is an X € X such that
S =Ry. Ris said to enumerate F iff R supernumerates F and forallx e X. Ry e F.

The content of the enumeration theorem is thus that there is an r.e. relation which
enumerates the r.e. sets. Next we have

Cantor's Di Principle: The two ions are i

(1) R supernumerates F
(ii) The complement of theDiagonal Set is in F (the Diagonal Setis {x € X: R(X.x)}).

Proof: Suppose (i)-(ii) hold. Then by (i) X-{x € X: R(x.x)} = {xe X: ~Rx.x)} € F.
By (i). {x € X: ~R(x.x)} =Ry for some y. But then R(y. x) iff ~R(x. x) for all x € X. so
in particular R(y. y) iff ~R(y. y). contradiction.

Source: p.66 of Kripke's Lecture Notes on Elementary Recursion Theorem, Princeton, 1996
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Semantic form of TUT, cont'd

@ Let Form} = the set of n-ary L-formulae, and suppose M is an L-structure
with a pairing function (-, -). Also assume that the coding ¢ — #(¢) € M is
1-1. In this context, the (codes of) sentences in the elementary diagram of
M can be split into:

EDT(M) = {{#(p), (a1, .., an)) € M: M |= ¢(a1, ..., a,), ¢ € Form7.},
ED™ (M) = {{(#(¢), (a1, ..., an)) € M: M | —p(a1, ..., an), p € Formz}.

@ Corollary. (Inseparability of positive and negative fragments ED)

ED*(M) and ED™ (M) are definably inseparable in M, i.e., there is no
M-definable D (parameters allowed) such that ED* (M) C D and
ED"(M)ND=g@.
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Semantic form of TUT, concluded

@ Corollary. (Incompleteness of PA)
Let TA = {#(¢) : (w,+,") E ¢, ¢ € Sentc,, = Form} }.
TA is not definable in (w,+, ).

In particular, TA is not axiomatizable by a subtheory of itself the set of
whose #-codes is definable in (w,+, ). Hence PA is incomplete.
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Syntactic Formulation of TUT

@ Let T be an L-theory, and suppose n — m be an arbitrary mapping of w
(natural numbers) into the set of closed £-terms (terms with no free
variables).

@ Fix an arbitrary 1-1 correspondence ¢ — #(y) between Form%1 and w, and
let n — ¢, be its inverse.

@ The diagonal function § : w — w is given by

d(n) = #(#n(m))-

@ A function f : w — w is said to be T-definable if there is an L-formula
0(x,y) such that

Vnew TFVy [0(n,y) < y=f(n)].

® A subset P of w is said to be T-definable if there is an L-formula (x) such
that:

Vne P TrHy(m) and VYn¢P Tk —(n).
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Syntactic Formulation of TUT (cont'd)

@ Theorem 1. (Syntactic formulation of TUT, ver 1.)
Given a theory T, let V7 = {#(p) : T F @}. Assuming that T is consistent,
then the diagonal function 6 and the set V1 are not both T-definable.

@ Corollary. (Syntactic formulation of TUT, ver. 2).

If T is a consistent L-theory such that ¢ is T-definable, then there is no
L-formula 6(x) such that for all L-sentences ¢ we have:

T E ¢ < 0(n), where n = #(p).

@ Corollary. If T is a consistent theory such that all total recursive functions
are T-representable, and ¢ — () is recursive, then V1 is not recursive.
In particular, T is incomplete.

@ Remark. If T interprets Robinson’s R (let alone Robinson’s Q) , then
represents all total recursive functions are T-definable.
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Proof of version 1 of TUT

Suppose not, thus there are formulae 6 and 1 such that the following hold:

(1)Vnew THEVy[0(n,y) << y=r], where §(n) =r.
(2) Vne Vi T+ ¢(m).

(3)Vné¢ V¢ TFE —¢(n).

Choose m € w such that ¢n,(x) = Vy (6(x, y) — —¢(y)), hence:

(4) om(m) =Vy (0(m,y) = —¢(y)).

If T pmn(m ) then by (1) and (4) we have T + —)(k), where §(m) = k.

If TV @mn(m), then #(pm(m)) ¢ Vr; and by the definition of 4,

(5) 6(m) = #(pm(m)).

So by (3) in this case we can also conclude that T + —)(k). Thus we have shown:
(6) T+ (k).

By (1) and (6), T F Vy (6(m,y) — —t(y)). So by (4) and (5) é(m) € V7 and
therefore by (2),

(7) T (k).

This contradicts the assumption of consistency of T.
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Tarski's 1953 abstract

418t. Alfred Tarski: Two general theorems on undefinability and
undecidability.

This paper contains a generalization of ideas known from works of Gédel and other
authors. See specifically Mostowzki, Sentences undeciable - - - , Amsterdam, 1952;
R. M. Robinson, Proceedings of the International Congress of Mathematicians,
1950, vol. 1; Tarski, Studia Philosophica vol. 1. Assumptions: € is any formalized
theory; S is a set of T-formulas including all axioms of predicate calculus with iden-
tity and closed under rules of inference; Ag, A, + * *, An, + + - are T-terms containing
no variables; ~(Ao=A4) is in S; x, ¥ are fixed T-variables. A function F on and to
the integers is called S-definable (relative to A,) if, for some formula ® and every
integer n, (*=2A.)—[(y=Arm«>®] is in S. Consider a quite arbitrary one-one cor-
relation between T-expressions ¥ and integers #; Nr (¥) is the integer correlated with
¥, Q, is the expression correlated with n. Let D(#) = Nr[(x=A,)—Q]; let P(n) be 0
if Qa is in S, and 1 otherwise. Theorem 1. If S is consistent, then functions D and P

are not both S-definable. New assumptions: G(r) =Nr(A.) and H(n, p)=Nr(Q, Q)
(where ™ is the concatenation symbol) are general recursive functions. Then Theorem I
implies: Theorem I1. If all general recursive functions are S-definable, then S is incon-
sistent or essentially undecidable. (Received January 16, 1953.)
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Tarski's assessment

The idea of this reconstruction and the realization of its far-
reaching implications is due to Godel {7]. The present version of
this reconstruction is distinguished by its generality and simplicity.
It applies to arbitrary formalized theories, and not only to those
in which a comprehensive fragment of the arithmetic of natural
numbers can be developed; to a large extent it is independent of
the way in which the notion of validity has been defined for a
given theory, and in particular it does not involve the notion of a
formal proof within this theory; it does not use the apparatus of
recursive functions—although this apparatus will play a funda-
mental role in applications of Theorem 1 to the decision problem.

For discussion on the history of TUT, see:

@ R. Murawski, Undefinability of truth; the problem of priority: Tarski vs G&del, History and Philosophy of
Logic (1988), Vol. 19, 153-160.
@ J. Wolenski, G&del, Tarski and Truth, Revue Internationale de Philosophie (2005) Vol. 59, pp. 459-490.

(END OF PART 1)
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A Question of Lempp and Rossegger

@ PA™ is the finitely axiomatized fragment of PA whose axioms describe the
non-negative substructure of discretely ordered rings (with no instance of the
induction scheme, hence the minus superscript).

@ Question. Is there a consistent completion of T = PA™ that is axiomatized
by a set of sentences of bounded quantifier complexity?

@ The above question was posed by Steffen Lempp and Dino Rossegger in the
context of their recent joint work [AGLRZ] with Uri Andrews, David
Gonzalez, and Hongyu Zhu, in which they establish:

Theorem. The following are equivalent for a complete first-order theory T:

(1) The set of models of T is N°-complete under Wadge reducibility (i.e.,
reducibility via continuous functions).

(2) T does not admit a first-order axiomatization by formulae of bounded
quantifier complexity.

[AGLRZ] The Borel complexity of the class of models of first-order theories, arXiv:2402.10029[math.LO]
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Two relevant hierarchies of formulae

Bounded Quantifiers and Arithmetical Hierarchy. (3z < y)y is an
abbreviation for (3z)(z < y & ¢) and (Vz < y) is an abbreviation for (Vz)(z <
y — ¢). By convention, z and y must be distinct variables. An Lo-formula is
bounded if all quantifiers occuring in it are bounded, i.e. occur in a context as
above. Furthermore, (Vz < y)¢ is an abbreviation for (Vz < y)(z # y — ¢)
and similarly for (Vz < y); z # y is the same as ~(z = y).

We introduce a hierarchy of formulas called the arithmetical hierarchy.
Yo-formulas = ITp-formulas = bounded formulas; Xy, 41-formulas have the
form (3z)¢p where ¢ is ITn, II41-formulas have the form (Vz)p where ¢ is
Yn. Thus a Zy-formula has a block of n alternating quantifiers, the first one
being existential, and this block is followed by a bounded formula. Similarly
for II,,.

o X5 =1l := 0.

o Yoy =

AT | =T | (Bt ASog1) | (B VEL ) | (g = S54y) | Jo 54 [ VOII5
o I}y =

AT | =S5 | (I AT ) | (I VITg) | (Bhs = Thhg) [ Vo Iy [ 30 X5
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Some background results (1)

@ Let N be the standard model of PA. For T = TA = Th(N) the answer to the
Lempp-Rossegger question is in the negative. This follows from the
Arithmetical Hierarchy Theorem of Kleene (1943) and Mostowski (1946)
that states that ¥y C XV, for each n € w.

@ For T = PA, the negative answer follows from a theorem of Rabin (1961)
that states that for each n € w no consistent extension of PA (in the same
language) is axiomatized by a set of X ,-sentences.

@ Rabin's result refines an earlier theorem of Ryll-Nardzewski (1952) that
states that no consistent extension of PA is finitely axiomatizable.
Ryll-Nardzewski and Rabin both employed model-theoretic arguments relying
on nonstandard elements to prove the aforementioned results (Theorem
10.2 of Kaye's Models of Peano Arithmetic offers a modern treatment).
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Some background results (2)

@ Rabin's result can be also established with an argument that mixes
proof-theoretic machinery, partial satisfaction classes, and Godel’s second
incompleteness theorem (see Theorem 2.36 of Chapter Il of Hajek and
P. Pudlak’'s Metamathematics of First Order Order Arithmetic).

@ As shown by Montague (1961) a similar result can be established for any
inductive sequential theory T, i.e., a sequential theory that has the power to
prove the full scheme of induction over its ‘natural numbers’ for all formulae
in the language of T. In the setting of Montague's result the relevant
hierarchy is based on quantifier-alternations-depth.

@ Canonical examples of inductive sequential theories include all extensions of
PA, Z (Zermelo set theory), Z, (second order arithmetic), and KM
(Kelley-Morse theory of classes).
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Sequential Theories

@ At first approximation, a theory is sequential if it supports a modicum of
coding machinery to handle finite sequences of all objects in the domain of
discourse. Godel (1931) used the Chinese Remainder Theorem to show that
PA is sequential. Jefabek (2012) showed that PA™ is sequential, and Visser
(2008) showed that Q is not sequential.

@ It is known that T is sequential iff T has a definitional extension to

Adjunctive Set Theory. The original definition of sequentiality due to Pudlak
is as follows: A theory T is sequential if there is a formula N(x) (read as “x
is a number”) , together with appropriate formulae providing interpretations
of equality, and the operations of successor, addition, and multiplication for
elements satisfying N(x) such that T proves the translations of the axioms
of Q when relativized to N(x); and additionally, there is a formula B(x, i, w)
(whose intended meaning is that x is the i-th element of a sequence w) such
that T proves that every sequence can be extended by any given element of
the domain of discourse.
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Surprising power of sequential theories

@ The definition of sequentiality is self-improving: the ‘numbers’ of a
sequential theory can be required to satisfy 1A, thanks to a result of Wilkie
(1980s) that shows that Q can interpret 1Ag ‘on a cut’.

@ The following result was established by Visser (1993, 2019); this result
refines the work of Pudlak (1984, 1998) in which logical depth (length of the
longest branch in the formation tree of the formula) is used as a measure of
complexity instead of the depth of quantifier alternations complexity.

@ Fact F. Suppose T is a sequential theory T formulated in a finite language
L, and fix n € w. Fix some interpretation N of arithmetic in T satisfying
Ag.

(a) There is a T-provable definable cut I, of N and a formula Sat,(x,y)
such that, provably in T, Sat, satisfies the Tarskian compositional clauses if
x is a Xi-formulae in I, (and for all variable assignments y). Therefore:

(b) There is a formula True,(x) such that, provably in T, True,(x) is
extensional, i.e., it respects the equivalence relation representing equality in
the interpretation N; and for all models M |= T, and for all L*-sentences
1, we have: M = (¢ > True,("¢7)).
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Commercial Break:Telegraphic History of Definable Partial
Truth Predicates:

o Turing, Post, Kleene, Mostowski (1940s) — 0(") is ¥ -complete.

@ Mostowski (1952) — PA supports a definable truth predicate for
Y ,-formulae.

e Montague (1961) — Every inductive sequential theory supports a
definable truth predicate for ¥ -formulae.

o Levy (1965) — ZF supports a definable truth predicate for
YL _formulae.

e Gaifman and Dimitracopoulos (1980) — IAg + Exp, supports a
definable truth predicate for X ,-formulae.

e Pudlak (1984, 1998) — Every sequential theory supports a definable
truth predicate for Depth -formulae.

e Visser (1994, 2019) — Every sequential theory supports a definable
truth predicate for X}-formulae.
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Theorem A

Theorem A. For any fixed n € w, every consistent sequential theory formulated
in a finite language that is axiomatized by a set of ¥ *-sentences is incomplete.

Proof of Theorem A. Suppose not, and let T be consistent completion of
sequential theory formulated in a finite language £. Then by the definition of
sequentiality T is also sequential. Suppose to the contrary that for some n € w,
T is axiomatized by a set of ¥ sentences, i.e., suppose (1) below:

(1) For n € w, there is a set A of X} sentences such that for all £-sentences v,
e TIff A .

Our proof by contradiction of Theorem A will be complete once we verify Claim
Q below since it contradicts TUT.

CLAIM ©. There is a unary L-formula ¢(x) such that for all £-sentences 1,
TEY o).
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Theorem A (cont'd)

Since T is sequential, we can find an L-formula, denoted Prfrye, (7, x) such that
for each standard L-sentence ¢ and standard m, and each model M of T, we
have:

(2) M |= Priqyye, (7, "¢7) iff 7 is (a code for) a proof of ¢ from
Trued® == {1 M |= True, ("¢ )}

Our proposed candidate of ¢(x) for establishing Claim © is the following formula
p(x); our choice of the letter p indicates the fact that the formula expresses
Rosser-provability (from the true X% sentences).

p(x) ==y [Prftre, (v, x) AVzZz < y =Prfype, (2, —x)].

Thus our goal is to show that for all L-sentences i), T F v < p(T¢7). It suffices
to show that for each model M of T, M |= 1) <> p(T¢™7). For the rest of the
proof, let M = T. We will first show:

(3) For all L-sentences 1, M =1 — p("97). To show (3), assume % holds in
M. Let nand A be as in (1), and note that A C True™.
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Theorem A (concluded)

By the assumptions about T, there are finitely many sentences aj, ..., a, in A
such that {a1,...,an} F 9. Let mp € w be (the code of) a proof of ¢ from
{a1,...,an}. Thanks to (2) we have: M = Prfrye, (70,79 ™). The assumption
of consistency of T coupled with (2) yields: M |=Vz < mg =Prfre,(z,"—¢7).
Hence (3) holds.

To complete the proof of CLAIM ©, we need to show that M = =t — —p("¢7)
for all L-sentences 1. For this purpose assume M |= —1). By putting (1) and the
assumption that M | —), we conclude that there is a standard proof mg of =)
from True’', which by (2) implies:

(4) For some mp € w, M = Prfyue, (mo, " —)7).

To see that M = —p("¢™) suppose to the contrary that M |= p("¢7). By the
choice of p, this means:

(5) For some mg € M, M = Prfrue,(m, ") AVz < mg =Prfre, (z,”—07).

The key observation is that putting (2) with the assumption M |= =) allows us
to conclude that the mg in (6) must be a nonstandard element of M. Thus by

standardness of 7y of (4) and the ordering properties of ‘natural numbers’ in M,
M | w9 < mo, which contradicts the second conjunct of (5). O
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Theorem B

Theorem B. For each n € w every consistent extension of |Aqg + Exp (in the
same language) that is axiomatized by a set of ¥ ,-sentences is incomplete.

Proof. As shown by Gaifman and Dimitracopoulos (1980) for each n € w there is
a formula Saty, such that, provably in IAg + Exp, Saty, satisfies compositional
clauses for all X,-formulae. In particular there is a formula Trues,(x) such that
for all models M of IAq + Exp, and for all X ,-sentences ¢, ¢ € Trueé/n‘ iff

M 1. We can now repeat the proof strategy of Theorem A with the use of

Trueé/n‘ instead of True/.

Alternatively, invoke the provability of the MRDP theorem on the Diophantine
representability of computably enumerable sets in IAg + Exp (shown by Gaifman
and Dimitracopoulos in the aforementioned paper). By the MRDP-theorem each
¥ ,-formula is equivalent to a ¥}-formula in IAg + Exp, so Theorem A applies. O

MRDP=Matijasevic-Robinson-Davis-Putnam
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A more general form of Theorem A

Theorem A*. Let T be a computably enumerable sequential theory formulated
in a finite language L and suppose A is a collection of L-sentences such that
A C X} for some n € w and T U A is consistent. Then T U A is incomplete.

Remark 1. Note that if A= &, then the proof strategy of Theorem A, when
applied to the setting of Theorem AT, goes through for all computably

enumerable consistent extensions T of R, without the assumption of sequentiality
of T.

Remark 2. We can obtain an analogous following strengthening of Theorem B.
There is also an analogous theorem at work for set theories:

Theorem C. For each n € w every consistent extension of KP (Kripke-Platek set
theory) that is axiomatized by a set of ¥ 1°VY_sentences is incomplete.
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Emil Jerabek's hit the same idea in 2016

Proposition: Let T, be an r.e. theory interpreting Robinson's arithmetic, and I" a set of
sentences for which T}, has a truth predicate Trp (m) that is,

Ty ¢ < Trp(T¢7) (%)

for all ¢ € I'. Then no extension of Tj, by a set of I'-sentences is a consistent complete
theory.

SOURCE: A MATHOVERFLOW ANSWER BY EMIL (2016);

https://mathoverflow.net/questions /256785 /a-completion-of-zfc



Why L cannot be infinite (1)

@ Consider the theory U = CT_ [IX;] of w-iterated compositional truth over
IX; (without any induction for formulae using nonarithmetical symbols,
hence the minus superscript) formulated in an extension of the language La
of arithmetic with infinitely many predicates {T,41 : n € w}, and
Tarski-style compositional axioms that stipulate that T, is compositional
for all £,-formulae, with Lo = La and L1 = L, U{T 11}

@ Since bi-conditionals of form ¢ «— T,1("™) are provable in U for every
Lq-sentence (thanks to the available composition axioms) ANY complete
extension V of U is axiomatized by U (which is of bounded complexity)
together with atomic sentences of form T,.1("¢ ") where ¢ € V and ¢ is an
L -sentence, thus U axiomatizable by a set of axioms of bounded quantifier
complexity.

@ By adding one axiom (internal induction) to the above theory we can get a
theory of bounded complexity whose deductive consequence includes PA,
and every completion of which is boundely axiomatizable.

] 26 /29



Why L cannot be infinite (2)

@ Alternatively, starting with any theory T formulated in a language £, we can
apply a process known in model theory as Morleyization/Atomization to
obtain an extension T+ of T, formulated in an extension £T of £, such that
T is axiomatized by adding a collection of sentences of bounded quantifier
depth to T, and T has elimination of quantifiers in the sense that for each
L*-formula ¢(xq, ..., X), there is an n-ary predicate P, € L' such that the
equivalence ¢(xi, ..., Xp) <> Py(x1, ..., X) is provable in T+,
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Off Shoots

@ Question. Is it possible for a consistent completion of Q to be axiomatized
by a collection of sentences of bounded quantifier-depth? Conjecture: Yes.

@ In Theorem B, the theory 1A + Exp cannot be weakened to PA™, i.e., for
some n € w there is a consistent completion of PA™ (in the same language)
that is axiomatized by single sentence together with a set of ¥;-sentences.
The proof of this and related results will appear in upcoming paper(s) with
Albert Visser and Mateusz tetyk.

@ Albert Visser, in work in progress, studies the most basic forms of
Rosser-provability and its sibling FGH-provability. (FGH =
Friedman-Goldfarb-Harrington) under minimal demands on the
meta-language and on the object-language. His work also expands on Saeed
Salehi's [S] who has shown that incompleteness for predicates with salient
properties are equivalent to their preconditions: roughly certain statements
of incompleteness theorems are equivalent to a weak version of the Fixed
Point Lemma.

[S] S. Salehi, A reunion of Gédel, Tarski, Carnap and Rosser, Journal of Logic and Computation (2023).
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