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Our story begins with ...

@ The following seminal paper inaugurated the study of recursively
saturated models of PA.

J. Barwise and J. Schlipf, On recursively saturated models of
arithmetic, in: Model theory and algebra (A memorial tribute to
Abraham Robinson), Lecture Notes in Math., vol. 498, 42-55,
Springer, 1975.

@ And the following papers did much to “spread the word":

R. Murawski, On expandability of models of Peano arithmetic. |1, Il,
[1l, Studia Logica, vol. 35, pp. 409-419 and 421-431; vol. 36, pp.
181-188; correction: Studia Logica, vol. 36 (1976/1977).

C. Smorynski, Recursively saturated nonstandard models of
arithmetic, J. Symb. Logic, (1981), 259-286.
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First page of the Barwise-Schlipf paper

ON RECURSIVELY SATURATED MODELS OF ARITHMETIC'

Jon Barwise and John Schlipf
The University of Wisconsin-Madison

§1. Introduction. In his retiring presidential address to the ASL Abraham Robinson

pointed out that one of the legitimate functions of the logictan is “to use his own
characteristic todls .. . to gain a better understanding of the various and varigated
Kinds of structures, methods, theortes and theorems that are to be found in
mathematics” ([6], p. 500). In this note we use our characteristic tools, admissible
sets with urelements from Barwise [1] and recursively saturated models from Schlip
[7), to shed a glimmer of light on the models that arise in non-standard analysis and

some of the known thecrems about them.

1.1 Definition. Let I = (M,R),...,R) bea structure for a finite language L.
We say that T is recursively saturated if for every recursive set B(x,y),...,¥,) of

finitary formulas of L, the followlng infinite sentence is true in M

vy, BxAB(%,7) > I%AD(%, )]

A,
oMo ges @)
where S (2) is the set of finite subsets of &.

It 15 not too hard to see that any model of Peano arithmetic (PA) which occurs
as the Integers in some model of non-standard analysis (or in some non «-model of
2F) 1s recursively saturated, The principle goal of this paper 15 to:

(a)  isolate a weak subsystem of analysis, called A}-PA

(b)  prove that the recursively saturated models of PA are exactly

those models that can be expanded to models of &1-PA

()  derlve certain corollartes from (b).

e preparation of this paper was supported by Grant NSP GP-43862X.  The

frat author 15 an Mieed 7, Shoart Pettow: o research for this paper was
o fhe secong auihor Fald & NG Graduste Feliowehip at the Unter of Wis.
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4. Epllogue, We conclude by making some (pernaps controversial) remarks on
subsystems of analysis.

Let A]-CA be the theory aj-PA plus the full second-order scheme of
induction. A{=CA is ot a conservative extension of PA since, for example,
Con(PA) is provable in A}-CA but not in PA, The theory Al-CA, and stronger
theories like m1-CA, have been studied extensively by proof theoretic methods,
but there does not seem to be a good model theory of such subsystems, Our
Theorem 1.2, on the other hand, shows that al-PA does have an interesting
model theory, So it seems to suggest that the study of other subsystems of
analysts, and their assoclated model theory, might proceed more fruitfully with
the axtom of induction, rather than scheme,

Moral; make your induction match your comprehension,
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Birth of Recursive Saturation

Recursive saturation, as a general concept, made its debut in the following
sources:

o J. Barwise, Admissible sets and structures, Springer-Verlag, 1975.

o J. Barwise and J. Schlipf, An introduction to recursively saturated
and resplendent models, J. Symb. Logic 41 (1976), 531-536.

o J. Schlipf, A guide to the identification of admissible sets above
structures, Ann. Math. Logic 12 (1977), 151-192.

@ J. Schlipf, Toward model theory through recursive saturation, J.
Symb. Logic 43 (1978), 183-206.

@ J.-P. Ressayre, Models with compactness properties relative to an
admissible language, Ann. Math. Logic 11 (1977), 31-55.
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Excerpt of Barwise and Schlipf’s account (1)

In early 1972, Barwise began reworking the theory of
admissible sets so as to allow them to be built up out of
mathematical structures, rather than just out of the empty
set. One of the features that soon emerged was that many
infinite structures M could now be elements of admissible
sets A with o(A) =w e.g., this holds if M is w-saturated.
It was also clear that such structures had very nice model
theoretic properties, by means of the associated infinitary
completeness and compactness theorems. In the summer of
1973 Schlipf introduced the notion of recursively saturated
structure, and proved that they are precisely those with
o(HYP(M)) = w. This gave, retroactively, a great many
interesting facts about countable, recursively saturated
models, including pseudo-uniqueness and co-homogeneity.
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Excerpt of Barwise and Schlipf’s account (2)

In the winter of 1973, Ressayre circulated some handwritten
notes on his notion of La-Y>-compact structure, again where
A is an admissible set of height greater than w. Harnik and
Makkai, familiar with admissible sets with urelements and
Schlipf’s Theorem, translated Ressayre’s notion into a
simpler equivalent in terms of admissible sets with
urelements. If you take their version of Ressayre’s notion
and restrict it to admissible sets of height w, you get the
notion of recursively saturated structure.
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Excerpt of Ressayre's account

As for any natural notion, there are many paths leading to
recursively saturated models. Infinitary model theory is one
of them, which brings these models down from the sky.
Suppose you want to extend to L, . the method of saturated
models; clearly compactness is needed, but the Barwise
compactness theorem applies only to ¥ theories and yields
only models that are saturated with respect to X types. Thus
you have to content yourself with this weak saturation
property called X-saturation (which would not be the case

if you dealt with finitary logic only). This constraint
makes it much easier to realize that through resplendence,
> -saturation implies some of the main consequences of
saturation; and in the particular case of L, ., you thus get
the (countable) recursively saturated models and their
resplendence. These considerations did in fact lead to the
first work on recursively saturated models, as if the

infinitary detour were a short cut.
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Excerpt of Smoryniski's account (1)

Through the ability of arithmetic to partially define truth and the ability of
infinite integers to simulate limit processes, nonstandard models of arithmetic
automatically have a certain amount of saturation: Any encodable partial type
whose formulae all fall into the domain of applicability of a truth definition must,
by finite satisfiability and Overspill, be nonstandard-finitely satisfiable-whence
realized. This fact was first exploited by A. Robinson[1963] who used the
unrealizability in a given model of a certain encodable partial type to prove
Tarski's Theorem on the Undefinability of Truth. A decade later, H. Friedman
brought this phenomenon to the public’s attention by using it to establish
impressive embeddability criteria for countable nonstandard models of arithmetic.
Subsequently, Wilkie considered models expandable to "strong theories” and,
among such models, complemented Friedman's embeddability criteria with
elementary embeddability and isomorphism criteria. Oddly enough, the fact that
some kind of saturation property was being employed was not explicitly
acknowledged in any of this work.
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Excerpt of Smoryniski's account (2)

The study of recursively saturated models of arithmetic has another starting
point-namely, questions of the expandability of models of arithmetic to models of
stronger theories. The prehistory of this approach begins again in the 1960s,
when Ehrenfeucht and Kreisel gave an example of nonexpandability by means of
an argument closely allied to that cited above of Robinson: A truth definition for
arithmetic entails the existence of much larger elements than would necessarily
exist in a model not having such a truth definition. The general introduction of
recursive saturation into model theory brought with it a general positive
expandability result-the strong relation universality, or resplendence, of countable
recursively saturated models. (Cf. Ressayre [1977] or Schlipf [1977].) It also
brought with it a specific expandability result (Barwise and Schlipf [1975]): A
model of arithmetic is recursively saturated iff it is expandable to a weak
second-order theory with an induction axiom and a comprehension (or even
choice) schema.
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The Barwise-Schlipf characterization

Theorem (Barwise-Schlipf) The following are equivalent for a
nonstandard model M of PA (of any cardinality).

(1) M is recursively saturated.
(2) There exists X C P(M) such that (M, X) = Al-CA,.
(3) (M, Def(M)) = Al-CAg + £1-AC.
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The notation explained

@ Def(M) is the collection of subsets of M that are parametrically
definable in M.

@ ACAy is the theory formulated in the two-sorted language Lo of
second order arithmetic (one sort for numbers, the other for sets of
numbers) whose axioms consist of PA™, the induction axiom:

VX([0 e X AVx(x € X = x+ 1€ X)] = Vx(x € X)),
and the arithmetical comprehension scheme consisting of formulae of
the following form where 1 (x, X) is first order and is allowed to have
parameters:

AXVx(x € X <> 9(x, X)).
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Remarks about ACA,

o (M, X) = ACAy iff (1) and (2), where:
(1) (M, X)xex = PA™
(2) If X € X, then Def(M, X) C X.

@ Therefore (M, Def(M)) = ACAy for every model M of PA, which
shows that ACAg is conservative over PA.

@ However, in contrast to PA, ACAy is finitely axiomatizable.

@ ACAy is not interpretable in PA, and has superexponential speed-up
over PA.
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o A Ylformula is of the form 3X (X, x), and a Mi-formula is a
formula of the form V.X (X, x), where (X, x) is arithmetical.

° A%—CAO is the extension of ACAg in which the arithmetical
comprehension is extended to Al-CA, i.e., the scheme scheme whose
instances are of the following form, where o(x) is a £1-formula and
7(x) is a Mi-formula (set parameters allowed in both o(x) and 7(x))

Vx [o(x) <> m(x)] — IXVx[x € X <> o(x)].

Enayat Barwise-Schlipf April 29 and May 6, 2020



¥1-AC and ¥1-Coll

o Let (Y), :={y:p(x,y) € Y}, where p(x,y) is a pairing function.
e Y1-AC is the scheme consisting of the formulae of the following form,
where 1(x, X) is first order and is allowed to have parameters:
Vx 3X P(x, X) = Y Vx (x,(Y),)-

@ Y1-Coll is the scheme consisting of formulae of the following form,
where 1(x, X) is first order and is allowed to have parameters:

Vx 3X ¢(x, X) = Y Vx Jy ¢(x,(Y),).
@ It is easy to see that in the presence of ACAy, Z%—Coll is equivalent
to 1-AC.
o Also, it known that £;-AC implies A{-CA for all k € w; an easy
proof can be found in Simpson’s SOSOA. Apparently, when Barwise
and Schlipf were writing their 1975 paper, they were unaware of this,

but by the time Smorynski wrote his 1981 paper, this became well
known, as he describes it as “evident” that ¥1-ACq implies Al-CA,.

Enayat Barwise-Schlipf April 29 and May 6, 2020



Corollaries of the Barwise-Schlipf Theorem

e Corollary 1. Al-CAq + ¥1-AC is a conservative extension of PA.

o Corollary 2. Suppose M is a nonstandard model of PA. If M is
rec. sat., then M has a mimimum expansion to a model of A%—CAO.
And if M is not rec. sat. then M has no expansion to a model of
Al-CAo.

@ Contrast with the following results pertaining to the standard model
N = (w,+,-) of PA. In what follows HYP = the set of subsets of w
that are Turing reducible to the a-th jump of zero, for some ordinal
a < wPk.

Theorem 1. (Kleene, 1955).

(a) HYP = The Al definable subsets of N.

(b) (N,HYP) is the minimum model of A}-CA.

Theorem 2. (Gandy-Kreisel-Tait, 1962) Let

X7 =n{X:(N,X) | T},

where T is an Ni-definable Lo-theory which includes Al-CAy.
Then X+ =HYP.
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Back to the Barwise-Schlipf Theorem

@ Theorem (Barwise-Schlipf) The following are equivalent for a
nonstandard model M of PA (of any cardinality).

(1) M is recursively saturated.
(2) There is X C P(M) such that (M, X) | A}-CA,.
(3) (M, Def(M) = AL-CAq + T1-AC.

@ The Barwise-Schlip proof of (1) = (3) uses Admissible Set Theory,
and appears to be deep.

@ In an exposition of this theorem by Smoryriski (JSL, 1981) a more
direct proof of this implication, attributed to Feferman and Stavi
(independently), is presented. This same proof is essentially repeated
in Simpson’'s SOSOA. We will shortly see this proof.

@ The implication (3) = (2) is of course trivial. As we shall see, the
proof of the implication (2) = (1) given by Barwise and Schlipf, is
fairly short and plausible, but has a nontrivial gap.
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The Feferman-Stavi proof

Recall that A]-CA is provable in $3-ACy, and that in the presence of
ACAy, 2}-AC is equivalent to ¥1-Coll.

Assuming M is recursively saturated, and X = Def(M), we will verify
that E%—Coll holds in (M, X). For this purpose, suppose for some
parameter A € X we have:

(1) (M, X) =Vx 3IX ¢(x, X, A).

Let a(m, v) be the arithmetical formula that defines A, where m € M is a
number parameter. Then

(2) (M, X) = Vx 0(x), where
0(x):= 'V 3y X/ely,v),Ala(m,v)).

¢(y,v)€Form
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The Feferman-Stavi Proof, cont'd

We claim that (3) below holds.
(3) There is some n € w such that M = Vx 0,(x), where

Hn(x) = ( )\E/F dy 1/J(X7X/80(y7 V)vA/a(mv V))?

where Form,, is the set of X ,-arithmetical formulae.
Suppose (3) is false, then we have:

(4) M = Ix —0,(x) for each n € w.

Let I'(x) := {—0n(x) : n € w}. It is easy to see that ['(x) is recursive. By
(4), for each n € w, ['(x) is finitely realizable in M, so by recursive
saturation of M, I'(x) is realized in M, i.e., M = 3x —=6(x), which
contradicts (2) and completes the verification of (3).
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The Feferman-Stavi Proof, cont'd

Let X, := Def,(M) = parameterically X ,-definable subsets of M.
Note that since X ,-satisfaction is definable in M, there is some B € X
that codes X, i.e.,

Xp={(B)m:me M}.
Therefore, by (3) we have:
(5) (M, X) = Vx 3y ¥(x,(B)y, A).
By quantifying out B, (5) readily yields:
(6) (M, X) =3Y ¥x Ty ¢¥(x,(Y)y, A).
This concludes the verification of ¥1-Collection (and therefore ¥1-AC) in

(M, X). 0
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The gap (1)

Suppose (M, X) = AL-CA. Suppose M is not recursively saturated. Then
by an overspill argument, there is no partial satisfaction class in X that is
correct for all standard formulae.

Suppose ®(x) is a recursive type that is not realized. For each m € M let
©m € P(x) be the first formula in ® that m does not realize.

Let Y ={"¢n': me M}. Clearly Y C w, and Y is infinite (by finite
satisfiability of ®). They it is claimed that Y is Al-definable in (M, X),
and therefore Y € X, which implies that w € X (since Y is infinite), thus
contradicting (M, X) = ACA,.

Here is the proposed Y 1-definition, where Sat(z, X) expresses " X is a
satisfaction predicate for formulae with length less than or equal to z".

(p € P)AFz(z = —p A IxIX

[Sat(z, X) A (mp,x) € X AV < p(ip € & — (¥, x) € X)]).

The above works, i.e., it defines Y. And here is the proposed I'I%—definition:
(p € P)AFz(z = —p A IXVX

[Sat(z, X) = (—¢,x) € X AVY < (¢ € ® — (¢, x) € X)].

A close look reveals that the above defines Y U (&M \ w).
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The gap (2)

@ The same gap is present in Murawski's (1976) account.

@ Smorynski (1981) encapsulates the problematic direction of the proof
of Barwise and Schlipf as the following lemma.
Purported Lemma. If M is not recursively saturated, and
(M, X) |= ACAyg, then w is Al-definable in (M, X).

@ In the next part of the talk we will show that the above Lemma is
false by using a construction that appears in a 1987 paper (JSL) of
Matt Kaufmann and Jim Schmerl, by showing:

@ Theorem Every completion T of PA has a nonstandard, finitely
generated (so not recursively saturated) model M such that w is not
Al-definable in (M, Def(M)).

@ In the next part, we will also see how to establish the problematic

direction in the Barwise-Schlipf theorem by using machinery developed
by Matt Kaufmann and Jim Schmerl in a 1984 paper (APAL).
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End of Part |
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Recall ...

Theorem (Barwise-Schlipf, 1975) The following are equivalent for a
nonstandard model M of PA (of any cardinality).

(1) M is recursively saturated.
(2) There exists X C P(M) such that (M, X) = Al-CA,.
(3) (M, Def(M)) = Al-CAg + £1-AC.

@ The Barwise-Schlip proof of (1) = (3) uses Admissible Set Theory,
and appears to be deep.In first part of the talk we saw a proof devised
by Feferman and Stavi from first principles.

@ The implication (3) == (2) s of course trivial. In the first part of
the talk we saw that the proof of the implication (2) = (1) given
by Barwise and Schlipf has a nontrivial gap.
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Loose ends from the last talk (1)
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Loose ends from the last talk (2)
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Recasting Y 1-definability (1)

Definition. Suppose that M = PA and A C M. Then, A is recursively
o-definable if there is a recursive sequence (pn(x) : n < w) of formulas,
each ¢,(x) defining a subset A, C M, such that A= {J,_,, An

More precisely, for such a sequence to be recursive, it is necessary that
there is a finite set F C M such that any parameter occurring in any
©wn(x) is in F, so technically the definition requires the existence of a
witnessing recursive sequence (pn(x,y) : n < w) of formulas, and some
choice of parameters m € M.

Recasting Lemma. Suppose that M = PA and A C M.
(a) If A is £1-definable in (M, Def(M)), then A is recursively o-definable.

(b) If M is not recursively saturated, Def(M) C X C P(M) and A is
recursively o-definable, then A is ¥}-definable in (M, X).
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Recasting Y 1-definability (2)

Proof.

o (a) Suppose that A is X1-definable in (M, Def(M)) by the formula
X 0(x, X). Let ©n(x) be the formula asserting: there is a
Y -definable subset X such that 6(x, X). Then {(p,(x) : n < w) is
recursive and shows that A is recursively o-definable.

o (b) Recall that Sat(x, X) is the formula asserting that X is a
satisfaction class for all formulas of length at most x. Since M is
assumed in this part not to be recursively saturated, there is no
X C M, and no nonstandard m € M such that:

(M, X) E PA* and (M, X) = Sat(m, X).
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Recasting ¥ 1-definability (3)

@ (b), cont’d. Let A be recursively o-definable by the recursive
sequence (@p(x) : n < w). We can assume that
Upn(x)) < U pnt1(x)) for all n < w , where £(¢(x)) is the length of
@(x) (by replacing pn(x) with \/;~, ¢i(x)). The sequence
{(on(x) : n < w) is coded in M, so let d € M be nonstandard such
that (pn(x) : n < d) extends (p,(x) : n < w) and £(pn(x)) is
standard iff nis. Then A is £1-definable in (M, Def(M)) by the
formula 3X0(x, X), where

0(x, X) = 3z[Sat(z, X) A In < d(L(pn) < z A {pn,x) € X)].

Thus, A is 1-definable in (M, Def(M)). The same definition works
in (M, X). O
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The gap in the Barwise-Schlipf proof is real (1)

o Definition. If | is a cut of M, then we say that / is definable if there
is some finitely realizable type ¥(x) over M (where X (x) uses at
most finitely many parameters from M), such that if M < A and
b € N realizes ¥(x), then N fills | with b. Moreover, | is recursively
definable if X(x) is recursive.

o First Kaufmann-Schmerl Theorem. The minimal model M+ of
every consistent completion T of PA has a simple nonstandard
extension in which w is not recursively definable.

@ The above theorem appears as Corollary 2.8 of the following paper:
Matt Kaufmann and James H. Schmerl, Remarks on weak notions of
saturation in models of Peano arithmetic, J. Symbolic Logic, 52
(1987), 129-148.
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Filling a gap
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The gap in the Barwise-Schlipf proof is real (2)

@ Theorem. Every completion T of PA has a nonstandard, finitely
generated (hence not recursively saturated) model M such that w is
not Al-definable in (M, Def(M)).

@ Proof. Let T be a completion of PA. By the first Kaufmann-Schmerl
Theorem, there is a finitely generated M = T in which w is not
recursively definable. Therefore M\ w is not recursively o-definable in
M. So by part (a) of Recasting Lemma, w is not Mi-definable in
(M, Def(M)). 0.

@ Remark. If M is a short recursively saturated model of T that is not
tall (and therefore is not recursively saturated), then by the same
reasoning as above w is not Al-definable in (M, Def(M)).
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The Second Kaufmann-Schmerl Theorem

e Definition (interval type). An interval type (v, m) over a model M
of PA is a type over M (with finitely many parameters m from M)
such that every formula in I is of the form 7 (m) < v < (), for
some pair of terms 71(y) and 72(y), and whenever 1, 72 € T, then
either M =1 — 72, or M |=y2 — 1.

@ The Second Kaufmann-Schmerl Theorem. The realizability of
every short finitely realizable type ¥(v,a) over a model M of PA can
be “effectively reduced” to the realizability of an interval type
[(v,3a,d) over M in the following sense:

(a) T'(v,m, d) is finitely realizable in M for every nonstandard

d € M; and if for some (nonstandard) d € M, ['(v,m, d) is realized in
M, then ¥(v,a) is realized in M.

(b) T'(v,y, z) is recursive in X(v,y). In particular, if ¥ is recursive,
then so is .

@ The above Theorem follows from Lemma 2.4 of the following paper:
M. Kaufmann and J. H. Schmerl, Saturation and simple extensions of
models of Peano arithmetic, Ann. Pure Appl. Logic 27 (1984
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Circumventing the Gap (1)

Theorem: If M is nonstandard and (M, X) = A}-CAy, then M is
recursively saturated.

Proof. We will show that if M is nonstandard and not recursively
saturated and X C P(M), then (M, X) = Al-CA. We can assume that
(M, X) = ACAg. There are two cases depending on whether M is short
or tall.

Case 1: M is short: Let ¢ € M be such that the elementary submodel of
M generated by c is cofinal in M. Fix a nonstandard element e € M, and
let (¢n(x) : n < w) be a recursive sequence of formulas (with ¢ and e as
the only parameters) such that ¢,(x) defines d, € M, where d, is the
least element that is above all elements that are definable from ¢ via a ¥,
formula of length at most e. It can be readily verified that (d, : n < w) is
strictly increasing, and unbounded in M. Let D = {d, : n < w}. Since
(M, X) = ACAy, then D ¢ X as otherwise w € X. Clearly, D is recursively
o-definable ; its complement also is (using the recursive sequence

(¥n(x) 1 n < w), where ¢p(x) is x < dy and Yp41(x) is dp < x < dpt1).
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Circumventing the Gap (2)

Case 2: M is tall: Since M is tall and not recursively saturated, there is
a finitely realizable (in M) recursive sequence (pn(x) : n < w) of formulas,
among which is a formula x < b, which is not realizable in M. By the
second Kaufmann-Schmerl theorem, we can assume that each ¢, (x)
defines an interval [a,, by], where a, < apt1 < bpt1 < b, Then, the cut

| =sup{a,: n <w} =inf{b,: n <w}, so both I and its complement are
recursively o-definable. By part (b) of Recasting Lemma / is Al-definable
in (M, X). Since | € X, then (M, X) [~ Al-CA. a
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Proof of the First Schmerl-Kaufmann Theorem (1)

We first prove the following.

Preliminary Theorem. Let Ty be any consistent extension of PA which
represents itself. Then Ty has a consistent completion such that w is not
recursively definable in M.

Proof. Enumerate all recursive types (and assume they are closed under
conjunction) as ¥ ,(x) for n € w (no need to worry about parameters since
we will be looking at types over M ). T will be built as the union of
consistent theories T,. Let ¢y be the term denoting the least number
satisfying 0(x) (and otherwise equal to 0 if there is no number x satisfying
0(x)).

Suppose T, has been constructed and n > 0. Let ¥(x) denote ¥ ,(x),
assume that T, UX is consistent Then we will build 7,41 such that one of
the following two conditions hold:

(1) Tht1 = Th U{Vx(o(x) = x < k)} for some o(x) € X(x) and some

k €w.

(2) Thy1 = T U{3x(o(x) A x > cp) : o(x) € X(x)}, for some € such
that T, F ¢ > k for all k € w.
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Proof of the First Schmerl-Kaufmann Theorem (2)

Case 1. There is a choice of o € ¥ and k € w such that Tj;1 asin (1) is
consistent, which makes our choice of T,; clear.

Case 2. Case 1 fails. Let 0(x) be a fixed-point for the formula
Provr,us)(x,"v <c), ie,

Tal=0(x) <> Provr,usv)(x,"v < c).

Claim: T, F ¢y > k for all k € w. If not, there is a consistent finite
extension T, of T, and some k € w such that T,/ ¢y = k, i.e.,

TS F0(k). Therefore T,F + Provr,us(,)(k,"v < ¢"), which in turn
implies that T,, U X(x) F x < ¢, so T} UZ(x) F x < cp. Hence there is
some o(x) € ¥(x) such that T,/ - Vx (o(x) = x < k), which contradicts
our assumption that Case | fails, and completes the proof of the claim
about ¢y. It is not hard to see that T, UX(x)U{x > ¢} is consistent, and
therefore the choice of Tpy1 = T U{3x(0(x) Ax > ) : o(x) € Z(x)}
results in a consistent theory. O
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Proof of the First Schmerl-Kaufmann Theorem (3)

o First Kaufmann-Schmerl Theorem. The minimal model M+ of
every consistent completion T of PA has a simple nonstandard
extension in which such that w is not recursively definable.

@ Proof. Add a new constant c¢ to the language of arithmetic and apply
the previous theorem to the theory:

TH=Tu{p+— [(c)rp,n = 0] 1 € Sentpa },

where (¢), is the exponent of the n-th prime in the prime
decomposition of c. By design, T represents T. U
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Proof of the second Kaufmann-Schmerl Theorem (1)

Definition (in PA). Suppose [a, b] is an interval and X is a finite set.
f:[a, b] — k-onto X is defined by induction on k as follows:

(Base) f : [a, b] —>0-onto X means f : [a, b] —onto X.

(Inductive) f : [a, b] —pt1-onto X means VY C X J[c, d] C [a, b] such
that £ : [c,d] —n-onto Y-

Lemma (in PA). For all numbers k and all finite sets X there is an
interval [a, b] and a function f : [a, b] — k-onto X-

Proof. Induction on k. Case k = 0 is clear. For the inductive case
suppose k = n, and X is some finite set. For each Y C X by inductive
assumption there is [ay, by] C [a, b] and fy such that

fY . [aY7 bY] — n-onto Y.

WLOG we can arrange [ay, by]| N[az,bz] =@ if Y # Z.
Let a=min{ay : Y C X}, b=max{ay : Y C X}, and let g : [a, b] = X
be any extension of U{fy : Y C X}. g is clearly (n+ 1)-onto. O
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Proof of the second Kaufmann-Schmerl Theorem (2)

Lemma (Effectively coding short types by interval types). Given a short
type {on(v,y) : n € w} such that o9 = {v < yo}, there is an interval type
r={vn(v,y,2) : n€w},

together with a term 7(x, yo, z), such that I is recursive in ¥, and for all
M [=PA, and all a € M the following hold.

(i) If X(v,a) is finitely realizable in M, then for every nonstandard
d e M, T(v,a,d) is finitely realizable in M.

(ii) If T (v,3a,d) is realized in M for some (nonstandard) d, then ¥(v,3) is
realized in M.
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Proof of the second Kaufmann-Schmerl Theorem (3)
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Proof of the second Kaufmann-Schmerl Theorem (4)

Proof.
Choose T, s, tp such that the following is PA-provable:

T(.,_yo,Z) : [50(.)77 Z), tO(YaZ)] —z-onto [O,YO]-

Generally choose s,41, th+1 so that the following conjunction is
PA-provable:

(Z > n) - Sn(y, Z) S 5n+1()77 Z) é tn+1(Ya Z) S tﬂ(?) Z)
AN

T('7y07z)[[sn+1(Y7Z)7 tn+1(y, Z)] —(z—n—1)-onto {X <Y Un(Xay)} :

Then choose:

Yn = (Z > n) A\ Sn+1(y72) <v< tn—i-l(ya Z)'
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Envoi

e Theorem. Suppose M |= PA.

e (a) (Kaufmann-Schmerl) M has no definable cuts iff M is
w-saturated.

o (b) (Kaufmann-Schmerl) M has no recursive definable cuts iff M is
recursively saturated.

o (c) (Pabion-Richard) For any uncountable cardinal x, (M, <™) is
k-saturated iff M is k-saturated.

o Remarks

e Kaufmann and Schmerl gave an alternative proof for (c) above, and
this new proof makes it clear that for any uncountable cardinal «, a
model M of ZFC is k-saturated iff (Ord, €)™ is k-saturated.

@ Tarski's elimination of quantifiers for real closed fields can be used to
show that (c) above also holds for real closed fields, even for k = w.

@ The analogue of (c) for Presburger arithmetic is known to be false.
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Thank you for your attention
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