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Introduction

It is well-known under ZFC that there is a nonstandard model of PA
which has a full standard system, i.e. every subset of this model’s
standard cut is the intersection of the standard cut with some subset
of the model which is definable from parameters. We show that the
use of Choice here cannot be avoided, and that there is no Borel
model of arithmetic with a full standard system, answering a question
of Kanovei.
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Borel models

A Borel model of a theory of arithmetic T consists of a Polish space
P and Borel functions + and · such that (P,+, ·) |= T .

A Borel− model of T is a tuple (P,+, ·,∼), where +, · are Borel
functions, ∼ a Borel equivalence relation, and ((P/ ∼),+, ·) |= T .

We can similarly define projective and projective− models of T .
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Main results

1. (Π1
1 − CA0) No Borel− model of EFA has full standard system.

2. (Z2 + Projective Measurability + measure 1 uniformization) No
projective− model of EFA has full standard system.

3. It is relatively consistent with Z2 that no projective− model of
EFA has full standard system.

4. In the Solovay model, there is no model of EFA with full standard
system.

5. It is relatively consistent with ZF + DC that there is no model of
EFA with full standard system.

Here EFA is the system Q + I∆0 + Exp.



5 / 22

Beginning the proof of (2).

Assume projective measurability and measure 1 uniformization.

Suppose towards contradiction M is a projective− model of EFA with
full standard system. Let X be a measure 1 subset of 2ω and
F : X → M \ ω a function assigning each x ∈ X a code in M. Let
Ext(x) be the nonstandard binary string extending x which is coded
by F (x).

Let x ∈ X be chosen uniformly at random. All probabilities mentioned
throughout this argument are with respect to this random choice.
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Notation

For two finite binary strings s and t, and n ≤ ω, let s_nt denote the
concatenation of s followed by n copies of t. Let an = (0)_n(1), i.e. 0
followed by n 1’s. Note that these terms are definable inside M for
nonstandard n as well. Let s_∞t be (s_ωt)M .
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Overspill lemma

A Fubini argument shows the following:

Overspill lemma:
For finite strings s and t (t of positive length), and ε > 0, there exists
a nonstandard N such that, with probability greater than 1− ε,
Ext(x + (s_ωt)) agrees with Ext(x) + s_∞t below N.
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The model has countable downward cofinality

For n < ω, let un(x) be the least N > n + 1 such that
Ext(x)(N) 6= Ext(x + an)(N) (or set un(x) =∞ if there is no such
N). Notice N is necessarily nonstandard.

Cofinality lemma: With probability 1, 〈un(x)〉 is downwards cofinal
in M \ ω.
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Proof of cofinality lemma

For n < ω, p < 1, consider the set

In,p = {m ∈ M : Prob(un(x) < m) > p}.

Clearly this is a final segment of M \ ω. Applying the overspill lemma,
we see In,p ( M \ ω. Let

Ip =
⋃
n<ω

In,p.
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Proof of cofinality lemma (cont.)

Now we will show Ip = M \ ω. Suppose not. Applying the overspill
lemma, there is m ∈ M \ (I ∪ ω) such that with probability greater
than 1− 1−p

2 ,

Ext(x + aω)(m) = Ext(x)(m) + am(m) 6= Ext(x)(m).

Let n be such that

Prob(Ext(x + aω)(m) = Ext(x + an)(m)) > 1− 1− p

2
.

Then Prob(Ext(x + an)(m) 6= Ext(x)(m)) > p, which implies
un ≤ m, so m ∈ In,p, contradiction.
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Proof of cofinality lemma (cont.)

Let in be least such that

In,1/2 ( Iin,1−3−i .

Then with probability at least 1− 3−i , uin(x) 6∈ In,1/2. By the
Borel-Cantelli lemma, with probability 1, for cofinitely many n,
uin(x) 6∈ In,1/2. Since I1/2 = M \ ω, this proves the Lemma.
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Setting up the contradiction

Let 〈Ni 〉 be a downwards cofinal ω-sequence in M \ ω. We will
recursively construct 0 < in, kn < ω, and finite strings sn, where s0 is
the empty string and sn+1 = sn

_knan. Suppose we have constructed
km for m < n (and in particular have constructed sn). Per the overspill
lemma, let in be least such that, with probability greater than 1− 3−n,
Ext(x + (sn

_ωan)) agrees with Ext(x) + (sn
_∞an) below 2in.
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Defining sequences

Let k = kn and f : 2k → 22n be such that, with probability greater
than 1− 3−n, for all j < 2n, Ext(x)(Nin + j) = f (x � k)(j).

Let sω =
⋃

n<ω sn. We will show that with probability 1, we can define
the standard cut from Ext(x) and Ext(x + sω), which will be a
contradiction.
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A calculation

Fix n. With probability greater than 1− 3 · 3−n, for all j < 2n, we have

Ext(x + sω)(Nin + j) = f ((x + sω) � kn)(j) = f ((x + sn+1) � kn)(j)

= f ((x + (sn
_ωan)) � kn)(j)

= Ext(x + (sn
_ωan)(Nin + j))

= Ext(x)(Nin + j) + (sn
_∞an)(Nin + j).

(The first, fourth, and fifth equalities each have have probability
greater than 1− 3−n of holding for all j < 2n.)
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Agreement of x and x + sω

By Borel-Cantelli, with probability 1, there are cofinitely many n such
that

Ext(x + sω)(Nin + j) = Ext(x)(Nin + j) + (sn
_∞an)(Nin + j).

There are two j < 2n such that (sn
_∞an)(Nin + j) = 0. For these j ,

we have
Ext(x)(Nin + j) = Ext(x + sω)(Nin + j).
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The contradiction

In M we define the sequence 〈bn〉 by letting bn be the nth element of
the set

B := {b ∈ M : Ext(x)(b) = Ext(x + sω)(b)}.

With probability 1, there are cofinally many n such that

|B ∩ {Nin + j : j < 2n}| = 2.

Thus,

ω = {n ∈ M : ∀k < n(bk+1 − bk ≤ bk+2 − bk+1)}.

We have defined the standard cut, contradiction!
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Relative consistency with ZF

Solovay’s model requires an inaccessible cardinal to be constructed.
Now we get rid of the large cardinal hypothesis.

Working in L, let P be the forcing which adds ω2 many random reals,
and let G be a generic filter. Let

V = L(P(ω1))L[G ].

Then V |= ZF + DCω1 + Unif. Furthermore, in this universe, there is a
total extension µ of Lebesgue measure which is translation-invariant,
has the Fubini property, and the Lebesgue density property. This is
sufficient to formalize the probabilistic argument that there is no
model of arithmetic which has full standard system.
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Resolving Kanovei’s problem

Kanovei asked whether there is a Borel model of arithmetic with full
standard system. Our argument can be adjusted to prove in ZF (in
fact, using just a fragment of second-order arithmetic) that there is no
such model.

Suppose towards contradiction that c is a Borel code for a model of
EFA with full standard system. This is a Π1

2 assertion about c. By
Shoenfield absoluteness, c codes a model of EFA with full standard
system in L[c].



19 / 22

A forcing extension

We do not have enough measure theory in this model to directly
formalize our previous argument. Instead, consider the random real
forcing extension L[c][r ]. Applying absoluteness again, it holds in this
model that c is a Borel code for a model M of EFA with full standard
system.

Use coanalytic uniformization to define (with c but not r as a
parameter) a choice of codes F : P(ω)→ M \ ω, and as before let
Ext(x) be the nonstandard binary string extending x which is coded
by F (x).

Then each probabilistic assertion about r can be formalized in L[c] as
the Lebesgue measure of the Boolean truth value of that assertion. In
particular, we have probability 1 that in L[c][r ], M is a model of
arithmetic which defines its standard cut, contradiction!
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Implications for Scott’s problem

Recall Scott’s result that the countable Scott sets are precisely the
countable subsets which are the standard system of some nonstandard
model of PA. Scott asked whether this characterization holds with the
countability hypothesis dropped.

Knight and Nadel confirmed that ZFC + CH resolves Scott’s problem
positively, and it remains open whether this is a ZFC theorem.

Trivially, P(ω) is a Scott set, so Scott’s problem cannot be decided in
ZF. In light of the model we used for this separation, we ask

Question: Does the theory ZFC + “R is a real-valued measurable
cardinal” negatively resolve Scott’s problem?
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Thank you for listening to my talk!


