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Standard forcing axioms

Recall the standard method of obtaining a model of the forcing
axiom for some suitable forcing class ' from a model with a
supercompact cardinal &:

Let f : kK — V, be a Laver function. We recursively construct a
sequence of posets in [ (Q, | @ < k) and let (P, | @« < k) be the
iteration of it with support suitable to T.

If P, has been defined for o < &, let Q4 be f(a) whenever that is
a P, name for a poset in I and trivial if f(«) is anything else.

Let G C P, be a V-generic filter.
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Provably persistent formulas

Definition
If I is a forcing class, a formula ¢ is said to be provably
-persistent if ZFC proves

Vx(p(x) = VQ € T kg ¢(X))
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Theorem
In V[G], for every P € T, every collection D of fewer than k dense
subsets of P, every P-name 3 € HX[G], and every provably

[ -persistent ¥ formula ¢ such that |Fp ¢(3), there is a D-generic
filter F C P such that V[G] = ¢(aF).
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Theorem

In V[G], for every P € T, every collection D of fewer than k dense
subsets of P, every P-name 3 € HX[G], and every provably

[ -persistent ¥ formula ¢ such that |Fp ¢(3), there is a D-generic

filter F C P such that V[G] = ¢(aF).

Proof.
We use the following fact:

Lemma

For any ¥ formula ¢ and any parameter b, ¢(b) holds if and only
if there is an uncountable cardinal 0 such that b € Hy and

Hp |= ¢(b).



V[G] contains ¥ ,-correct filters

Theorem

In V[G], for every P € T, every collection D of fewer than k dense
subsets of P, every P-name 3 € HX[G], and every provably

[ -persistent ¥ formula ¢ such that |Fp ¢(3), there is a D-generic

filter F C P such that V[G] = ¢(aF).

Proof.
We use the following fact:

Lemma
For any ¥ formula ¢ and any parameter b, ¢(b) holds if and only
if there is an uncountable cardinal 0 such that b € Hy and

Hy = ¢(b).
Let P and & be appropriate P;-names in V. By the lemma, there is
a 0 > |P| such that, for some p € G,

Ho = plte, P €T A (p,1p) IFp p 6(3)
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(continued)
Now let A > |Hy| and fix an elementary embedding j: V — M
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V[G] contains ¥ ,-correct filters

Proof.

(continued)
Now let A > |Hy| and fix an elementary embedding j: V — M

such that:

> crit(j) =k

> j(r) > A

> ‘McM

> j(f)(r) =P
By the closure condition, which is preserved by Py,
Ho[G] = H)1°l so P € TMIC],
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Proof.
(continued)
Since j(P,) is constructed from j(f) as Py is from f,

j(P) =P, xPxR

for some name R for a poset in T.
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Proof.
(continued)
Since j(P,) is constructed from j(f) as Py is from f,

j(P) =P, xPxR
for some name R for a poset in T.

If Hx K CP*Ris V[G]-generic, we can extend j to
J*: V[G] = MIG][H][K] by

Since H C P is V[G]-generic, it meets every dense set in D and
VIG][H .
H@[ 1[H] ): ¢(3H)-
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V —
HSV[G][H]
HeM[ JIH]

M—

MI[G] MIG][H]—MIG][H][K]
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M[G][H] = ¢(a™). Since R € IMICIH and ¢ is provably
I-persistent, the same holds in M[G][H][K].

SO
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Proof.
VIGI[H] _ HGM[G”H], so

(continued) By the closure conditions, H,
MI[G][H] = ¢(a"). Since R € TMICIIH] and ¢ is provably
I-persistent, the same holds in M[G][H][K].

Since |D| < & = crit(j*) and 4 € HY1%), j*(D) = j*"D and
Jj*(a) = a. By closure, j [ P € M, so j* | P and thus j*" H are in
MIG][H][K].



V[G] contains ¥ ,-correct filters

Proof.
(continued) By the closure conditions, H(;/[G][H] = HGM[G”H]

M[G][H] = ¢(a™). Since R € IMICIH and ¢ is provably
I-persistent, the same holds in M[G][H][K].

, SO

Since |D| < k = crit(j*) and 4 € HYLel, J*(D) =j*"D and

j*(a) = 4. By closure, j [ P € M, so j* | P and thus j*" H are in
MIG][H][K].

The filter on j*(IP) generated by j*" H meets every dense set in
J*"D, and since none of the conditions relevant to the
interpretation of 4 are moved by j*, it interprets 4 as a'’.
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V[G] contains ¥ ,-correct filters

Proof.
(continued)
We have therefore shown that

M[G][H][K] = 3 a filter F C j*(P) Vd € j*(D) d N F % 0 A ¢(j*(3)F).



V[G] contains ¥ ,-correct filters

Proof.
(continued)
We have therefore shown that

M[G][H][K] |= 3 a filter F C j*(P) Vd € j*(D) d N F # 0 A ¢(j*(3)F).

Thus by elementarity, in V[G] there is a D-generic filter F C P
such that ¢(aF) holds.
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Supercompactness for A

We wish to extend the preceding result to formulas of higher
complexity. For this, we need the following large cardinal:
Definition

A cardinal k is said to be v-supercompact for a class A if there is
an elementary embedding j : V — M such that:

> crit(j) = k

> j(k)>v

> "M CM

> j(ANVy)NV,=ANYV,
k is supercompact for A iff it is v-supercompact for A for all
ordinals v.

We are primarily interested in the case where
A=CN:={acOrd|V, <5, V}.
Fact: every supercompact cardinal is supercompact for C(1).
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Laver functions for A

Definition

If k is supercompact for a class A, f : kK — Vj is a Laver function
for A on « iff for every set x and every ordinal v > |trcl(x)|, there
is an elementary embedding j : V — M witnessing that « is
v-supercompact for A such that j(f)(x) = x.

Lemma
Every cardinal k. supercompact for A has a Laver function for A.
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Woodin-Jensen Characterization of Forcing Axioms

The following result is helpful in formulating generalized forcing
axioms:

Lemma
(Woodin 2010, Jensen 2012)
The following are equivalent for any poset P and regular cardinal
K> wi:
1. FA..(P)

2. For all cardinals v such that P € H, |= ZFC~ and all X C H,
with | X| < k, there is a transitive structure N with an
elementary embedding o : N — H., such that

X U{P} C rng(o) and there is an N-generic filter
F C o Y(P).
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The X ,-correct Forcing Axiom

Definition

If I is a forcing class, k > wj is a regular cardinal, and nis a
positive integer, ¥ ,-CFA_,(I) is the statement that for all posets
P €T, P-names a, provably -persistent %, formulas ¢ such that
IFp ¢(a), cardinals v > £ such that a,P € H, = ZFC~, and

X C H, such that |X]| < &, there is a transitive structure N with
an elementary embedding o : N — H, such that

» 3, P, and all elements of X are in the range of o
» rng(o) Nk is transitive

> there is an N-generic filter F C o~ 1(PP) such that ¢(c—1(a)F)
holds.



The X ,-correct Forcing Axiom

Definition

If I is a forcing class, k > wj is a regular cardinal, and nis a
positive integer, ¥ ,-CFA_,(I) is the statement that for all posets
P €T, P-names a, provably -persistent %, formulas ¢ such that
IFp ¢(a), cardinals v > £ such that a,P € H, = ZFC~, and

X C H, such that |X]| < &, there is a transitive structure N with
an elementary embedding o : N — H, such that

» 3, P, and all elements of X are in the range of o
» rng(o) Nk is transitive

> there is an N-generic filter F C o~ 1(PP) such that ¢(c—1(a)F)
holds.

Note: Even if A CT, in general £,-CFA (") % X,-CFA-.(A)
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Nice Forcing Classes

Definition
(adapted from Aspero and Bagaria (2001))
A forcing class I is n-nice iff:

» [ contains the trivial forcing

» Each P €T preserves wy

> IfPeclandlp QeT, then PxQeTl
>

For every inaccessible cardinal x and every forcing iteration
((Pa,Qq) | < K) of posets in V,; N T with some suitable
support, if P; is the corresponding limit, then:
> P, el
» |kp, P./P, €l inforall a <k
> If P, € V, for all « < k, then P, is the direct limit of
(P | o < k) and has the k-cc

» [ is > ,-definable
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Consistency of 2 ,-CFA

Theorem

If & is supercompact for C("=1) and T is an n-nice forcing class,
then there is a k-cc forcing P, € I such that, if G C P, is
V-generic, V[G] = X,-CFA-.(T).

Proof.

We follow the previous proof closely, noting important differences.
Let f : kK — Vj be a Laver function for A, P, be the Baumgartner
iteration of I derived from f and G C P, be V-generic.

Now, in addition to choosing 6 very large, we additionally require
9 e Ccl-1),
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Facts about C(" cardinals

1:If6eCW QeHyisa forcing poset, and H C Q is V-generic,
0 € (C(MVIHL (Fuchs 2018)

2: If g is a £, formula and b is a parameter, ¢(b) holds iff there is
some 0 € C("1 such that b € Vj and Vj = ¢(b).
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Consistency of 2 ,-CFA

Proof.
(continued)
Therefore we can find a 6 > ~ such that VQV[G] EPerl and, if

H C P is V[G]-generic, VOV[G”H] = ¢(aM).
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Consistency of 2 ,-CFA

Proof.
(continued)
Therefore we can find a 6 > ~ such that VQV[G] EPerl and, if

H C P is V[G]-generic, VOV[G”H] = ¢(aM).

As before, we choose A > [Vp[(=0) and let j : V — M witness
that & is A-supercompact for C("~1) such that j(f)(x) = P.

By elementarity, j(C("D N V,.) = (C""NM 1 j(k), so

e CrDnx=(CDnV)nVy=(C=D)Mn X Therefore
we can use Vj to transport the truth of P € T and ¢(a') from
forcing extensions of V to forcing extensions of M.



Consistency Diagram

V[G][H]——VIG][H][K]

2

\VQV[G][H]

J I j
VpMIGIIH]

M—M[G]—— M[G][H]—MIG][H][K]

V —V[G]
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Proof.
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As before, j(P;) =P, * P+ R, so we let K C R be

V[G][H] generic and extend j to j* : V[G] — M[G][H][K], where
( G)_J( )G*H*K
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Proof.

(continued)

As before, j(P,) = P, PR, so we let K C R be

V[G][H] generic and extend j to j* : V[G] — M[G][H][K], where
( G)_J( )G*H*K

Now let o’ : HX[G] — I-IJ.,\(/IW[)G”H][K] be the restriction of j*. Since

jTHY € M, o’ € M[G][H][K].



Consistency of 2 ,-CFA

Proof.
(continued) o
As before, j(Py) =P, *P xR, so we let K CR be

V[G][H] generic and extend j to j* : V[G] — M[G][H][K], where
( G)_J( )G*H*K

Now let o’ : HX[G] — I-IJ.,\(/IW[)G”H][K] be the restriction of j*. Since
jTHY € M, o’ € M[G][H][K].

Since | X| < k = crit(j*), j*(X) = j*" X, so j*(X) C rng(c’).
Finally, since crit(c’) = k gets mapped to j(k),
rng(c’) N j*(k) = K is transitive.
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Therefore we have shown:



Consistency of 2 ,-CFA

Proof.
(continued)
Therefore we have shown:

M[G][H][K] k= "there exists a transitive structure N (i.e. H7V[G])
with an elementary embedding o’ : N — Hj+(4) such that
F(X)U{j*(3),;*(P)} C rng(c’), mg(c") Nj* (k) is transitive, and
there is an N-generic filter H C ¢'71(j*(IP)) such that ¢(o'1(j*(3))").”

By elementarity, in V[G] we have a transitive N with an

elementary embedding o : N — HX[G] such that
X U{a,P} C rng(o), rg(c) Nk is transitive, and there is an

N-generic filter F C o~ 1(P) such that ¢(o~1(3)F). O
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Weak Genericity

To formulate bounded versions of ¥ ,-correct forcing axioms, we
need the following bounded version of being generic over a small
structure:

Definition

If 5 is an ordinal, N |= ZFC~ A" 3 is a cardinal” is transitive, and
P is a complete Boolean algebra in N, a filter F C P is < S-weakly
N-generic iff for every maximal antichain of P A € N with

AN < B, ANF #£ 0.
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2> ,-correct Bounded Forcing Axioms

Definition

Y ,-CBFASA(T), for T a forcing class, n a positive integer, and

A > Kk > wy cardinals, is the statement that for all complete
Boolean algebras P, P-names a € H,, cardinals v > X such that

P e H, = ZFC~, X C H, with | X| < &, and provably I'-persistent
Y, formulas ¢ such that IFp ¢(a), there is a transitive structure N
with an elementary embedding o : N — H,, such that

X U{P,a,k,\} C rng(o) and a < A-weakly N-generic filter F C P
such that ¢(3F) holds, where P := 0=1(P), X := 0—%(\), and
3:=o01(a).
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> ,-correctly H)-reflecting cardinals

The consistency of ¥ ,-CBFASA(I) for n-nice I and regular « and
A is derived from the following large cardinal (modeled on
Miyamoto 1998):

Definition

For cardinals x and A, we say that k is X ,-correctly H)-reflecting
iff x is regular and for every X, formula ¢ and a € H,, if ¢(a)
holds, then the set of Z < H) of size less than k and containing a
such that Vi, = ¢(7z(a)) (where 77 is the Mostowski collapse
map for Z) is stationary in [Hy\]<*. If A = k1%, we say that & is
> ,-correctly +« reflecting.
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Definition
A function g : kK — V, is called a X ,-correctly Hjy-reflecting Laver
function on « if for all £, formulas ¢ and a € H) such that ¢(a),

there are stationarily many Z < H) of size less than x such that
Vi = d(mz(a)) and g(mz(k)) = mz(a).



Correctly Reflecting Laver Functions

Definition

A function g : kK — V, is called a X ,-correctly Hjy-reflecting Laver
function on « if for all £, formulas ¢ and a € H) such that ¢(a),
there are stationarily many Z < H) of size less than x such that

Vi = d(mz(a)) and g(mz(k)) = mz(a).

Lemma
If k is X ,-correctly Hy-reflecting, the fast function forcing IF,, adds
a correctly reflecting Laver function on k.
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Standard Forcing Axioms are ¥ ;-correct

Theorem

(Miyamoto 1998 for proper forcing)

For any forcing class I' and regular cardinals A > k > ws,
BFAZ)(T) is equivalent to ¥1-CBFASN(T).



Standard Forcing Axioms are ¥ ;-correct

Theorem

(Miyamoto 1998 for proper forcing)

For any forcing class I' and regular cardinals A > k > ws,
BFAZ)(T) is equivalent to ¥1-CBFASN(T).

Proof sketch: First prove a bounded version of the Woodin-Jensen
characterization using weak genericity. Then for any suitable ¢, P,
X, a, v, IFp ¢(a) is absolute to H,. If N is transitive and
elementarily embeds into H, and F C P is < A-weakly N-generic,
NP /F = ¢([a]F). [3]F is in the well-founded part of N¥/F, and it
collapses to 37, where bars denote the inverse of the embedding
N — H,.
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Maximality Principles

Definition

(Stavi and Vaananen 2002, Hamkins 2003)

For I a forcing class, n a positive integer, and S a class of
parameters, ¥ ,-MPr(S) is the assertion that for all provably
l-persistent L, formulas ¢ and a € S such that thereisaP el
which forces ¢(a), then ¢(a) already holds in the ground model.
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(Bagaria 2000 for n = 1)
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equivalent to ¥ ,-CBFAZ(T).
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> ,-MP is Equivalent to Symmetric ¥ ,-CBFA

Theorem

(Bagaria 2000 for n = 1)

For any positive integer n and regular cardinal k, ¥ ,-MPr(H,) is
equivalent to ¥ ,-CBFAZ(T).

Proof sketch: (<): Use check names

(=): Construct a suitable N € H,, with an elementary embedding
o : N — H, that fixes a, then consider the statement "there exists
a < R-weakly N-generic filter F C PP such that ¢(aF) holds”.
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poset Add(ws1, 1), and it is preserved by all subcomplete forcing.



Applications

Proposition

If T is the class of countably closed forcings or of subcomplete
forcings, then ¥o-CBFAZ:2(T) implies:

a) ¢

b) -KH

Proof.

a) ¢ is a X sentence which is forced by the countably closed
poset Add(ws1, 1), and it is preserved by all subcomplete forcing.

b) If T is any wj-tree, subcomplete forcing does not add branches
to it, and there is a countably closed forcing which collapses the
cardinality of its branches to w;. " T is not a Kurepa tree” is then
a X5 formula which can be made true by countably closed forcing
and is preserved under arbitrary subcomplete forcing, so it is true
inV. []
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Applications

Proposition

If T is any nonempty subclass of proper forcing, Zg—CBFAEé(F)
(with the added condition that |N| < k) implies that for all
cardinals 6 (regular) and v with v < k and 0“7 <\, X C 0
smaller than k, and sequences S = (Sg | 8 < v) of stationary
subsets of [0]“, then there isa Y C 0 such that X C Y, |Y| <k,
and Sg N [Y]“ is stationary in [Y]* for all § < v.



Applications

Proposition

If T is any nonempty subclass of proper forcing, Zg—CBFAEé(F)
(with the added condition that |N| < k) implies that for all
cardinals 6 (regular) and v with v < k and 0“7 <\, X C 0
smaller than k, and sequences S = (Sg | 8 < v) of stationary
subsets of [0]“, then there isa Y C 0 such that X C Y, |Y| <k,
and Sg N [Y]“ is stationary in [Y]* for all § < v.

Proof sketch: Take o : N — H, with rng(o) N Hy transitive,

X U{S,0,v} C rg(c), and 0~1(S) a sequence of v stationary
subsets of [0]“, where 6 := o~1(6), since stationarity is Iy and
preserved by proper forcing. Let Y = o6,

It can be shown that ¢" ¢~1(a) = a for all a € [0]* N rng(o) and
o"07Y(Sg) = Ss N rg(c) C SpN[Y]”. To show that the latter is
stationary, fix 8 <vand h:[Y]<“ = Y, and let ¥ = lohoo.
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Proof sketch (continued): By the stationarity of 0~1(Sg), there is
an 3 € 07 1(Sp) closed under ', so a:=0(3) € 0”07 1(Sp), and it
is easy to see that h"a C a. Thus " o~ 1(Sp) is stationary in [Y]“,
so SgN[Y]* is as well. [J
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