Σ_n -Correct Forcing Axioms

Ben Goodman CUNY Graduate Center

March 31, 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Recall the standard method of obtaining a model of the forcing axiom for some suitable forcing class Γ from a model with a supercompact cardinal κ :

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Recall the standard method of obtaining a model of the forcing axiom for some suitable forcing class Γ from a model with a supercompact cardinal κ :

Let $f : \kappa \to V_{\kappa}$ be a Laver function. We recursively construct a sequence of posets in $\Gamma \langle \mathbb{Q}_{\alpha} | \alpha < \kappa \rangle$ and let $\langle \mathbb{P}_{\alpha} | \alpha \leq \kappa \rangle$ be the iteration of it with support suitable to Γ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Recall the standard method of obtaining a model of the forcing axiom for some suitable forcing class Γ from a model with a supercompact cardinal κ :

Let $f : \kappa \to V_{\kappa}$ be a Laver function. We recursively construct a sequence of posets in $\Gamma \langle \mathbb{Q}_{\alpha} | \alpha < \kappa \rangle$ and let $\langle \mathbb{P}_{\alpha} | \alpha \leq \kappa \rangle$ be the iteration of it with support suitable to Γ .

If \mathbb{P}_{α} has been defined for $\alpha < \kappa$, let \mathbb{Q}_{α} be $f(\alpha)$ whenever that is a \mathbb{P}_{α} name for a poset in Γ and trivial if $f(\alpha)$ is anything else.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recall the standard method of obtaining a model of the forcing axiom for some suitable forcing class Γ from a model with a supercompact cardinal κ :

Let $f : \kappa \to V_{\kappa}$ be a Laver function. We recursively construct a sequence of posets in $\Gamma \langle \mathbb{Q}_{\alpha} | \alpha < \kappa \rangle$ and let $\langle \mathbb{P}_{\alpha} | \alpha \leq \kappa \rangle$ be the iteration of it with support suitable to Γ .

If \mathbb{P}_{α} has been defined for $\alpha < \kappa$, let \mathbb{Q}_{α} be $f(\alpha)$ whenever that is a \mathbb{P}_{α} name for a poset in Γ and trivial if $f(\alpha)$ is anything else.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $G \subseteq \mathbb{P}_{\kappa}$ be a *V*-generic filter.

Provably persistent formulas

<□ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ · のQ@

Provably persistent formulas

Definition

If Γ is a forcing class, a formula ϕ is said to be provably $\Gamma\text{-persistent}$ if ZFC proves

$$\forall x(\phi(x) \rightarrow \forall \mathbb{Q} \in \mathsf{\Gamma} \Vdash_{\mathbb{Q}} \phi(\check{x}))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …の�?

Theorem

In V[G], for every $\mathbb{P} \in \Gamma$, every collection \mathcal{D} of fewer than κ dense subsets of \mathbb{P} , every \mathbb{P} -name $\dot{a} \in H_{\kappa}^{V[G]}$, and every provably Γ -persistent Σ_2 formula ϕ such that $\Vdash_{\mathbb{P}} \phi(\dot{a})$, there is a \mathcal{D} -generic filter $F \subseteq \mathbb{P}$ such that $V[G] \models \phi(\dot{a}^F)$.

Theorem

In V[G], for every $\mathbb{P} \in \Gamma$, every collection \mathcal{D} of fewer than κ dense subsets of \mathbb{P} , every \mathbb{P} -name $\dot{a} \in H_{\kappa}^{V[G]}$, and every provably Γ -persistent Σ_2 formula ϕ such that $\Vdash_{\mathbb{P}} \phi(\dot{a})$, there is a \mathcal{D} -generic filter $F \subseteq \mathbb{P}$ such that $V[G] \models \phi(\dot{a}^F)$.

Proof.

We use the following fact:

Lemma

For any Σ_2 formula ϕ and any parameter b, $\phi(b)$ holds if and only if there is an uncountable cardinal θ such that $b \in H_{\theta}$ and $H_{\theta} \models \phi(b)$.

Theorem

In V[G], for every $\mathbb{P} \in \Gamma$, every collection \mathcal{D} of fewer than κ dense subsets of \mathbb{P} , every \mathbb{P} -name $\dot{a} \in H_{\kappa}^{V[G]}$, and every provably Γ -persistent Σ_2 formula ϕ such that $\Vdash_{\mathbb{P}} \phi(\dot{a})$, there is a \mathcal{D} -generic filter $F \subseteq \mathbb{P}$ such that $V[G] \models \phi(\dot{a}^F)$.

Proof.

We use the following fact:

Lemma

For any Σ_2 formula ϕ and any parameter b, $\phi(b)$ holds if and only if there is an uncountable cardinal θ such that $b \in H_{\theta}$ and $H_{\theta} \models \phi(b)$. Let $\dot{\mathbb{P}}$ and \ddot{a} be appropriate \mathbb{P}_{κ} -names in V. By the lemma, there is

a $heta \gg |\dot{\mathbb{P}}|$ such that, for some $p \in {\mathcal{G}}$,

$$H_{ heta}\models p\Vdash_{\mathbb{P}_{\kappa}}\dot{\mathbb{P}}\in \mathsf{\Gamma}\wedge(p,\dot{1}_{\mathbb{P}})\Vdash_{\mathbb{P}_{\kappa}st\dot{\mathbb{P}}}\phi(\ddot{a})$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …の�?

Proof.

(continued) Now let $\lambda > |H_{\theta}|$ and fix an elementary embedding $j: V \to M$ such that:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•
$$crit(j) = \kappa$$

• $j(\kappa) > \lambda$
• $^{\lambda}M \subset M$
• $j(f)(\kappa) = \dot{\mathbb{P}}$

Proof.

(continued)

Now let $\lambda > |H_{\theta}|$ and fix an elementary embedding $j: V \to M$ such that:

$$crit(j) = \kappa$$

$$j(\kappa) > \lambda$$

$$^{\lambda}M \subset M$$

$$j(f)(\kappa) = \dot{\mathbb{P}}$$

By the closure condition, which is preserved by \mathbb{P}_{κ} , $H_{\theta}[G] = H_{\theta}^{M[G]}$, so $\mathbb{P} \in \Gamma^{M[G]}$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …の�?

Proof. (continued) Since $j(\mathbb{P}_{\kappa})$ is constructed from j(f) as \mathbb{P}_{κ} is from f,

$$j(\mathbb{P}_{\kappa}) = \mathbb{P}_{\kappa} * \dot{\mathbb{P}} * \dot{\mathbb{R}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for some name \mathbb{R} for a poset in Γ .

Proof. (continued) Since $j(\mathbb{P}_{\kappa})$ is constructed from j(f) as \mathbb{P}_{κ} is from f,

$$j(\mathbb{P}_{\kappa}) = \mathbb{P}_{\kappa} * \dot{\mathbb{P}} * \dot{\mathbb{R}}$$

for some name $\dot{\mathbb{R}}$ for a poset in Γ .

If $H * K \subseteq \mathbb{P} * \dot{\mathbb{R}}$ is V[G]-generic, we can extend j to $j^* : V[G] \to M[G][H][K]$ by

$$j^*(\dot{x}^G) = j(\dot{x})^{G*H*K}$$

Proof. (continued) Since $j(\mathbb{P}_{\kappa})$ is constructed from j(f) as \mathbb{P}_{κ} is from f,

$$j(\mathbb{P}_{\kappa}) = \mathbb{P}_{\kappa} * \dot{\mathbb{P}} * \dot{\mathbb{R}}$$

for some name \mathbb{R} for a poset in Γ .

If $H * K \subseteq \mathbb{P} * \mathbb{R}$ is V[G]-generic, we can extend j to $j^* : V[G] \to M[G][H][K]$ by

$$j^*(\dot{x}^G) = j(\dot{x})^{G*H*K}$$

Since $H \subseteq \mathbb{P}$ is V[G]-generic, it meets every dense set in \mathcal{D} and $H_{\theta}^{V[G][H]} \models \phi(\dot{a}^H)$.

イロト イヨト イヨト

э

Proof.

(continued) By the closure conditions, $H_{\theta}^{V[G][H]} = H_{\theta}^{M[G][H]}$, so $M[G][H] \models \phi(\dot{a}^H)$. Since $\mathbb{R} \in \Gamma^{M[G][H]}$ and ϕ is provably Γ -persistent, the same holds in M[G][H][K].

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof.

(continued) By the closure conditions, $H_{\theta}^{V[G][H]} = H_{\theta}^{M[G][H]}$, so $M[G][H] \models \phi(\dot{a}^{H})$. Since $\mathbb{R} \in \Gamma^{M[G][H]}$ and ϕ is provably Γ -persistent, the same holds in M[G][H][K].

Since
$$|\mathcal{D}| < \kappa = crit(j^*)$$
 and $\dot{a} \in H_{\kappa}^{V[G]}$, $j^*(\mathcal{D}) = j^{*"}\mathcal{D}$ and $j^*(\dot{a}) = \dot{a}$. By closure, $j \upharpoonright \dot{\mathbb{P}} \in M$, so $j^* \upharpoonright \mathbb{P}$ and thus $j^{*"}H$ are in $M[G][H][K]$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof.

(continued) By the closure conditions, $H_{\theta}^{V[G][H]} = H_{\theta}^{M[G][H]}$, so $M[G][H] \models \phi(\dot{a}^H)$. Since $\mathbb{R} \in \Gamma^{M[G][H]}$ and ϕ is provably Γ -persistent, the same holds in M[G][H][K].

Since
$$|\mathcal{D}| < \kappa = crit(j^*)$$
 and $\dot{a} \in H_{\kappa}^{V[G]}$, $j^*(\mathcal{D}) = j^{*"}\mathcal{D}$ and $j^*(\dot{a}) = \dot{a}$. By closure, $j \upharpoonright \dot{\mathbb{P}} \in M$, so $j^* \upharpoonright \mathbb{P}$ and thus $j^{*"}H$ are in $M[G][H][K]$.

The filter on $j^*(\mathbb{P})$ generated by $j^{*"}H$ meets every dense set in $j^{*"}\mathcal{D}$, and since none of the conditions relevant to the interpretation of \dot{a} are moved by j^* , it interprets \dot{a} as \dot{a}^H .

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …の�?

Proof. (continued) We have therefore shown that

 $M[G][H][K] \models \exists \text{ a filter } F \subseteq j^*(\mathbb{P}) \ \forall d \in j^*(\mathcal{D}) \ d \cap F \neq \emptyset \land \phi(j^*(\dot{a})^F).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof. (continued) We have therefore shown that

 $M[G][H][K] \models \exists \text{ a filter } F \subseteq j^*(\mathbb{P}) \ \forall d \in j^*(\mathcal{D}) \ d \cap F \neq \emptyset \land \phi(j^*(a)^F).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Thus by elementarity, in V[G] there is a \mathcal{D} -generic filter $F \subseteq \mathbb{P}$ such that $\phi(\dot{a}^F)$ holds.

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

We wish to extend the preceding result to formulas of higher complexity. For this, we need the following large cardinal:

We wish to extend the preceding result to formulas of higher complexity. For this, we need the following large cardinal:

Definition

A cardinal κ is said to be ν -supercompact for a class A if there is an elementary embedding $j: V \to M$ such that:

•
$$crit(j) = \kappa$$

- $j(\kappa) > \nu$
- $^{\nu}M \subset M$

$$\blacktriangleright j(A \cap V_{\kappa}) \cap V_{\nu} = A \cap V_{\nu}$$

 κ is supercompact for A iff it is $\nu\text{-supercompact}$ for A for all ordinals $\nu.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We wish to extend the preceding result to formulas of higher complexity. For this, we need the following large cardinal:

Definition

A cardinal κ is said to be ν -supercompact for a class A if there is an elementary embedding $j: V \to M$ such that:

•
$$crit(j) = \kappa$$

- $j(\kappa) > \nu$
- $\blacktriangleright \ ^{\nu}M \subset M$

$$\blacktriangleright j(A \cap V_{\kappa}) \cap V_{\nu} = A \cap V_{\nu}$$

 κ is supercompact for A iff it is $\nu\text{-supercompact}$ for A for all ordinals $\nu.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We are primarily interested in the case where $A = C^{(n)} := \{ \alpha \in Ord \mid V_{\alpha} \prec_{\Sigma_n} V \}.$

We wish to extend the preceding result to formulas of higher complexity. For this, we need the following large cardinal:

Definition

A cardinal κ is said to be ν -supercompact for a class A if there is an elementary embedding $j: V \to M$ such that:

•
$$crit(j) = \kappa$$

- $j(\kappa) > \nu$
- $\blacktriangleright \ ^{\nu}M \subset M$

$$\blacktriangleright j(A \cap V_{\kappa}) \cap V_{\nu} = A \cap V_{\nu}$$

 κ is supercompact for A iff it is ν -supercompact for A for all ordinals ν .

We are primarily interested in the case where $A = C^{(n)} := \{ \alpha \in Ord \mid V_{\alpha} \prec_{\Sigma_n} V \}.$ Fact: every supercompact cardinal is supercompact for $C^{(1)}$.

Laver functions for A

Laver functions for A

Definition

If κ is supercompact for a class A, $f : \kappa \to V_{\kappa}$ is a Laver function for A on κ iff for every set x and every ordinal $\nu \ge |trcl(x)|$, there is an elementary embedding $j : V \to M$ witnessing that κ is ν -supercompact for A such that $j(f)(\kappa) = x$.

Laver functions for A

Definition

If κ is supercompact for a class A, $f : \kappa \to V_{\kappa}$ is a Laver function for A on κ iff for every set x and every ordinal $\nu \ge |trcl(x)|$, there is an elementary embedding $j : V \to M$ witnessing that κ is ν -supercompact for A such that $j(f)(\kappa) = x$.

Lemma

Every cardinal κ supercompact for A has a Laver function for A.

Woodin-Jensen Characterization of Forcing Axioms

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Woodin-Jensen Characterization of Forcing Axioms

The following result is helpful in formulating generalized forcing axioms:

Lemma

(Woodin 2010, Jensen 2012) The following are equivalent for any poset \mathbb{P} and regular cardinal $\kappa > \omega_1$:

- 1. FA $_{<\kappa}(\mathbb{P})$
- 2. For all cardinals γ such that $\mathbb{P} \in H_{\gamma} \models ZFC^{-}$ and all $X \subset H_{\gamma}$ with $|X| < \kappa$, there is a transitive structure N with an elementary embedding $\sigma : N \to H_{\gamma}$ such that $X \cup \{\mathbb{P}\} \subseteq rng(\sigma)$ and there is an N-generic filter $F \subseteq \sigma^{-1}(\mathbb{P})$.

The Σ_n -correct Forcing Axiom

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?
The Σ_n -correct Forcing Axiom

Definition

If Γ is a forcing class, $\kappa > \omega_1$ is a regular cardinal, and *n* is a positive integer, $\sum_{n} - CFA_{<\kappa}(\Gamma)$ is the statement that for all posets $\mathbb{P} \in \Gamma$, \mathbb{P} -names \dot{a} , provably Γ -persistent \sum_{n} formulas ϕ such that $\Vdash_{\mathbb{P}} \phi(\dot{a})$, cardinals $\gamma > \kappa$ such that $\dot{a}, \mathbb{P} \in H_{\gamma} \models ZFC^-$, and $X \subset H_{\gamma}$ such that $|X| < \kappa$, there is a transitive structure *N* with an elementary embedding $\sigma : N \to H_{\gamma}$ such that

- \dot{a} , \mathbb{P} , and all elements of X are in the range of σ
- $rng(\sigma) \cap \kappa$ is transitive
- there is an N-generic filter F ⊆ σ⁻¹(ℙ) such that φ(σ⁻¹(a)^F) holds.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The Σ_n -correct Forcing Axiom

Definition

If Γ is a forcing class, $\kappa > \omega_1$ is a regular cardinal, and *n* is a positive integer, $\sum_{n} - CFA_{<\kappa}(\Gamma)$ is the statement that for all posets $\mathbb{P} \in \Gamma$, \mathbb{P} -names \dot{a} , provably Γ -persistent \sum_{n} formulas ϕ such that $\Vdash_{\mathbb{P}} \phi(\dot{a})$, cardinals $\gamma > \kappa$ such that $\dot{a}, \mathbb{P} \in H_{\gamma} \models ZFC^-$, and $X \subset H_{\gamma}$ such that $|X| < \kappa$, there is a transitive structure *N* with an elementary embedding $\sigma : N \to H_{\gamma}$ such that

- \dot{a} , \mathbb{P} , and all elements of X are in the range of σ
- $rng(\sigma) \cap \kappa$ is transitive
- there is an N-generic filter F ⊆ σ⁻¹(ℙ) such that φ(σ⁻¹(a)^F) holds.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Note: Even if $\Delta \subseteq \Gamma$, in general Σ_n -*CFA*_{$<\kappa$}(Γ) $\Rightarrow \Sigma_n$ -*CFA*_{$<\kappa$}(Δ)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Definition (adapted from Aspero and Bagaria (2001)) A forcing class Γ is *n*-nice iff:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Definition

(adapted from Aspero and Bagaria (2001))

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- A forcing class Γ is *n*-nice iff:
 - Γ contains the trivial forcing

Definition

(adapted from Aspero and Bagaria (2001))

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- A forcing class Γ is *n*-nice iff:
 - Γ contains the trivial forcing
 - ► Each $\mathbb{P} \in \Gamma$ preserves ω_1

Definition

(adapted from Aspero and Bagaria (2001)) A forcing class Γ is *n*-nice iff:

- Γ contains the trivial forcing
- ► Each $\mathbb{P} \in \Gamma$ preserves ω_1
- ▶ If $\mathbb{P} \in \Gamma$ and $\Vdash_{\mathbb{P}} \dot{\mathbb{Q}} \in \Gamma$, then $\mathbb{P} * \dot{\mathbb{Q}} \in \Gamma$

Definition

(adapted from Aspero and Bagaria (2001)) A forcing class Γ is *n*-nice iff:

- Γ contains the trivial forcing
- ► Each $\mathbb{P} \in \Gamma$ preserves ω_1
- ▶ If $\mathbb{P} \in \Gamma$ and $\Vdash_{\mathbb{P}} \dot{\mathbb{Q}} \in \Gamma$, then $\mathbb{P} * \dot{\mathbb{Q}} \in \Gamma$
- For every inaccessible cardinal κ and every forcing iteration ⟨⟨ℙ_α, ℚ_α⟩ | α < κ⟩ of posets in V_κ ∩ Γ with some suitable support, if ℙ_κ is the corresponding limit, then:

$$\blacktriangleright \mathbb{P}_{\kappa} \in \mathsf{\Gamma}$$

- $\blacktriangleright \Vdash_{\mathbb{P}_{\alpha}} \mathbb{P}_{\kappa} / \mathbb{P}_{\alpha} \in \mathsf{\Gamma} \text{ in for all } \alpha < \kappa$
- If $\mathbb{P}_{\alpha} \in V_{\kappa}$ for all $\alpha < \kappa$, then \mathbb{P}_{κ} is the direct limit of $\langle \mathbb{P}_{\alpha} \mid \alpha < \kappa \rangle$ and has the κ -cc

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Definition

(adapted from Aspero and Bagaria (2001)) A forcing class Γ is *n*-nice iff:

- Γ contains the trivial forcing
- ► Each $\mathbb{P} \in \Gamma$ preserves ω_1
- ▶ If $\mathbb{P} \in \Gamma$ and $\Vdash_{\mathbb{P}} \dot{\mathbb{Q}} \in \Gamma$, then $\mathbb{P} * \dot{\mathbb{Q}} \in \Gamma$
- For every inaccessible cardinal κ and every forcing iteration ⟨⟨ℙ_α, ℚ_α⟩ | α < κ⟩ of posets in V_κ ∩ Γ with some suitable support, if ℙ_κ is the corresponding limit, then:

$$\blacktriangleright \mathbb{P}_{\kappa} \in \mathsf{\Gamma}$$

- $\blacktriangleright \Vdash_{\mathbb{P}_{\alpha}} \mathbb{P}_{\kappa} / \mathbb{P}_{\alpha} \in \mathsf{\Gamma} \text{ in for all } \alpha < \kappa$
- If $\mathbb{P}_{\alpha} \in V_{\kappa}$ for all $\alpha < \kappa$, then \mathbb{P}_{κ} is the direct limit of $\langle \mathbb{P}_{\alpha} \mid \alpha < \kappa \rangle$ and has the κ -cc

 \vdash Γ is Σ_n -definable

Consistency of Σ_{n} -CFA

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

Theorem

If κ is supercompact for $C^{(n-1)}$ and Γ is an n-nice forcing class, then there is a κ -cc forcing $\mathbb{P}_{\kappa} \in \Gamma$ such that, if $G \subset \mathbb{P}_{\kappa}$ is V-generic, $V[G] \models \Sigma_n$ -CFA_{< κ}(Γ).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem

If κ is supercompact for $C^{(n-1)}$ and Γ is an n-nice forcing class, then there is a κ -cc forcing $\mathbb{P}_{\kappa} \in \Gamma$ such that, if $G \subset \mathbb{P}_{\kappa}$ is V-generic, $V[G] \models \Sigma_n$ -CFA_{< κ}(Γ).

Proof.

We follow the previous proof closely, noting important differences. Let $f : \kappa \to V_{\kappa}$ be a Laver function for A, \mathbb{P}_{κ} be the Baumgartner iteration of Γ derived from f and $G \subset \mathbb{P}_{\kappa}$ be V-generic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Theorem

If κ is supercompact for $C^{(n-1)}$ and Γ is an n-nice forcing class, then there is a κ -cc forcing $\mathbb{P}_{\kappa} \in \Gamma$ such that, if $G \subset \mathbb{P}_{\kappa}$ is V-generic, $V[G] \models \Sigma_n$ -CFA_{< κ}(Γ).

Proof.

We follow the previous proof closely, noting important differences. Let $f : \kappa \to V_{\kappa}$ be a Laver function for A, \mathbb{P}_{κ} be the Baumgartner iteration of Γ derived from f and $G \subset \mathbb{P}_{\kappa}$ be V-generic.

Now, in addition to choosing θ very large, we additionally require $\theta \in C^{(n-1)}$.

Facts about $C^{(n)}$ cardinals

Facts about $C^{(n)}$ cardinals

1: If $\theta \in C^{(n)}$, $\mathbb{Q} \in H_{\theta}$ is a forcing poset, and $H \subseteq \mathbb{Q}$ is V-generic, $\theta \in (C^{(n)})^{V[H]}$. (Fuchs 2018)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

1: If $\theta \in C^{(n)}$, $\mathbb{Q} \in H_{\theta}$ is a forcing poset, and $H \subseteq \mathbb{Q}$ is V-generic, $\theta \in (C^{(n)})^{V[H]}$. (Fuchs 2018)

2: If ϕ is a Σ_n formula and b is a parameter, $\phi(b)$ holds iff there is some $\theta \in C^{(n-1)}$ such that $b \in V_{\theta}$ and $V_{\theta} \models \phi(b)$.

Consistency of Σ_{n} -CFA

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

Proof. (continued) Therefore we can find a $\theta > \gamma$ such that $V_{\theta}^{V[G]} \models \mathbb{P} \in \Gamma$ and, if $H \subseteq \mathbb{P}$ is V[G]-generic, $V_{\theta}^{V[G][H]} \models \phi(\dot{a}^H)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof.

(continued)

Therefore we can find a $\theta > \gamma$ such that $V_{\theta}^{V[G]} \models \mathbb{P} \in \Gamma$ and, if $H \subseteq \mathbb{P}$ is V[G]-generic, $V_{\theta}^{V[G][H]} \models \phi(\dot{a}^H)$.

As before, we choose $\lambda > |V_{\theta}|(=\theta)$ and let $j: V \to M$ witness that κ is λ -supercompact for $C^{(n-1)}$ such that $j(f)(\kappa) = \mathbb{P}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Proof.

(continued)

Therefore we can find a $\theta > \gamma$ such that $V_{\theta}^{V[G]} \models \mathbb{P} \in \Gamma$ and, if $H \subseteq \mathbb{P}$ is V[G]-generic, $V_{\theta}^{V[G][H]} \models \phi(\dot{a}^H)$.

As before, we choose $\lambda > |V_{\theta}|(=\theta)$ and let $j: V \to M$ witness that κ is λ -supercompact for $C^{(n-1)}$ such that $j(f)(\kappa) = \mathbb{P}$.

By elementarity, $j(C^{(n-1)} \cap V_{\kappa}) = (C^{(n-1)})^{M} \cap j(\kappa)$, so $\theta \in C^{(n-1)} \cap \lambda = j(C^{(n-1)} \cap V_{\kappa}) \cap V_{\lambda} = (C^{(n-1)})^{M} \cap \lambda$. Therefore we can use V_{θ} to transport the truth of $\mathbb{P} \in \Gamma$ and $\phi(\dot{a}^{H})$ from forcing extensions of V to forcing extensions of M.

Consistency Diagram

<ロ> (日) (日) (日) (日) (日)

æ

Consistency of Σ_{n} -CFA

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

Proof. (continued) As before, $j(\mathbb{P}_{\kappa}) = \mathbb{P}_{\kappa} * \dot{\mathbb{P}} * \dot{\mathbb{R}}$, so we let $K \subseteq \mathbb{R}$ be V[G][H]-generic and extend j to $j^* : V[G] \to M[G][H][K]$, where $j^*(\dot{x}^G) = j(\dot{x})^{G*H*K}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof.

(continued) As before, $j(\mathbb{P}_{\kappa}) = \mathbb{P}_{\kappa} * \dot{\mathbb{P}} * \dot{\mathbb{R}}$, so we let $K \subseteq \mathbb{R}$ be V[G][H]-generic and extend j to $j^* : V[G] \to M[G][H][K]$, where $j^*(\dot{x}^G) = j(\dot{x})^{G*H*K}$.

Now let $\sigma' : H_{\gamma}^{V[G]} \to H_{j(\gamma)}^{M[G][H][K]}$ be the restriction of j^* . Since $j \upharpoonright H_{\gamma}^{V} \in M, \ \sigma' \in M[G][H][K]$.

A D N A 目 N A E N A E N A B N A C N

Proof.

(continued) As before, $j(\mathbb{P}_{\kappa}) = \mathbb{P}_{\kappa} * \dot{\mathbb{P}} * \dot{\mathbb{R}}$, so we let $K \subseteq \mathbb{R}$ be V[G][H]-generic and extend j to $j^* : V[G] \to M[G][H][K]$, where $j^*(\dot{x}^G) = j(\dot{x})^{G*H*K}$.

Now let $\sigma' : H_{\gamma}^{V[G]} \to H_{j(\gamma)}^{M[G][H][K]}$ be the restriction of j^* . Since $j \upharpoonright H_{\gamma}^{V} \in M, \ \sigma' \in M[G][H][K]$.

Since $|X| < \kappa = crit(j^*)$, $j^*(X) = j^{*"}X$, so $j^*(X) \subset rng(\sigma')$. Finally, since $crit(\sigma') = \kappa$ gets mapped to $j(\kappa)$, $rng(\sigma') \cap j^*(\kappa) = \kappa$ is transitive.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Consistency of Σ_{n} -CFA

Proof. (continued) Therefore we have shown:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Proof. (continued) Therefore we have shown:

 $M[G][H][K] \models " \text{ there exists a transitive structure } N \text{ (i.e. } H^{V[G]}_{\gamma})$ with an elementary embedding $\sigma' : N \to H_{j^*(\gamma)}$ such that $j^*(X) \cup \{j^*(\dot{a}), j^*(\mathbb{P})\} \subset rng(\sigma'), rng(\sigma') \cap j^*(\kappa) \text{ is transitive, and}$ there is an N-generic filter $H \subseteq \sigma'^{-1}(j^*(\mathbb{P}))$ such that $\phi(\sigma'^{-1}(j^*(\dot{a}))^H)$."

By elementarity, in V[G] we have a transitive N with an elementary embedding $\sigma: N \to H_{\gamma}^{V[G]}$ such that $X \cup \{\dot{a}, \mathbb{P}\} \subset rng(\sigma), rng(\sigma) \cap \kappa$ is transitive, and there is an N-generic filter $F \subseteq \sigma^{-1}(\mathbb{P})$ such that $\phi(\sigma^{-1}(\dot{a})^F)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Weak Genericity

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Weak Genericity

To formulate bounded versions of Σ_n -correct forcing axioms, we need the following bounded version of being generic over a small structure:

Weak Genericity

To formulate bounded versions of Σ_n -correct forcing axioms, we need the following bounded version of being generic over a small structure:

Definition

If β is an ordinal, $N \models ZFC^- \land "\beta$ is a cardinal" is transitive, and \mathbb{P} is a complete Boolean algebra in N, a filter $F \subseteq \mathbb{P}$ is $< \beta$ -weakly N-generic iff for every maximal antichain of $\mathbb{P} \ A \in N$ with $|A|^N < \beta, \ A \cap F \neq \emptyset$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Σ_n -correct Bounded Forcing Axioms

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

Σ_n -correct Bounded Forcing Axioms

Definition

$$\begin{split} &\Sigma_n\text{-}CBFA_{<\kappa}^{<\lambda}(\Gamma), \text{ for } \Gamma \text{ a forcing class, } n \text{ a positive integer, and} \\ &\lambda \geq \kappa > \omega_1 \text{ cardinals, is the statement that for all complete} \\ &\text{Boolean algebras } \mathbb{P}, \mathbb{P}\text{-names } \dot{a} \in H_\lambda, \text{ cardinals } \gamma \geq \lambda \text{ such that} \\ &\mathbb{P} \in H_\gamma \models ZFC^-, X \subset H_\gamma \text{ with } |X| < \kappa, \text{ and provably } \Gamma\text{-persistent} \\ &\Sigma_n \text{ formulas } \phi \text{ such that } \Vdash_{\mathbb{P}} \phi(\dot{a}), \text{ there is a transitive structure } N \\ &\text{with an elementary embedding } \sigma : N \to H_\gamma \text{ such that} \\ &X \cup \{\mathbb{P}, \dot{a}, \kappa, \lambda\} \subseteq rng(\sigma) \text{ and } a < \bar{\lambda}\text{-weakly } N\text{-generic filter } F \subseteq \bar{\mathbb{P}} \\ &\text{ such that } \phi(\bar{a}^F) \text{ holds, where } \bar{\mathbb{P}} := \sigma^{-1}(\mathbb{P}), \ \bar{\lambda} := \sigma^{-1}(\lambda), \text{ and} \\ &\bar{a} := \sigma^{-1}(\dot{a}). \end{split}$$

Σ_n -correctly H_{λ} -reflecting cardinals

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Σ_n -correctly H_{λ} -reflecting cardinals

The consistency of $\sum_{n} -CBFA_{<\kappa}^{<\lambda}(\Gamma)$ for *n*-nice Γ and regular κ and λ is derived from the following large cardinal (modeled on Miyamoto 1998):

Σ_n -correctly H_{λ} -reflecting cardinals

The consistency of $\sum_{n} -CBFA_{<\kappa}^{<\lambda}(\Gamma)$ for *n*-nice Γ and regular κ and λ is derived from the following large cardinal (modeled on Miyamoto 1998):

Definition

For cardinals κ and λ , we say that κ is Σ_n -correctly H_{λ} -reflecting iff κ is regular and for every Σ_n formula ϕ and $a \in H_{\lambda}$, if $\phi(a)$ holds, then the set of $Z \prec H_{\lambda}$ of size less than κ and containing asuch that $V_{\kappa} \models \phi(\pi_Z(a))$ (where π_Z is the Mostowski collapse map for Z) is stationary in $[H_{\lambda}]^{<\kappa}$. If $\lambda = \kappa^{+\alpha}$, we say that κ is Σ_n -correctly $+\alpha$ reflecting.

(日)((1))

Correctly Reflecting Laver Functions

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?
Correctly Reflecting Laver Functions

Definition

A function $g : \kappa \to V_{\kappa}$ is called a Σ_n -correctly H_{λ} -reflecting Laver function on κ if for all Σ_n formulas ϕ and $a \in H_{\lambda}$ such that $\phi(a)$, there are stationarily many $Z \prec H_{\lambda}$ of size less than κ such that $V_{\kappa} \models \phi(\pi_Z(a))$ and $g(\pi_Z(\kappa)) = \pi_Z(a)$.

Correctly Reflecting Laver Functions

Definition

A function $g: \kappa \to V_{\kappa}$ is called a Σ_n -correctly H_{λ} -reflecting Laver function on κ if for all Σ_n formulas ϕ and $a \in H_{\lambda}$ such that $\phi(a)$, there are stationarily many $Z \prec H_{\lambda}$ of size less than κ such that $V_{\kappa} \models \phi(\pi_Z(a))$ and $g(\pi_Z(\kappa)) = \pi_Z(a)$.

Lemma

If κ is Σ_n -correctly H_{λ} -reflecting, the fast function forcing \mathbb{F}_{κ} adds a correctly reflecting Laver function on κ .

Standard Forcing Axioms are Σ_1 -correct

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 回 ● の Q @

Standard Forcing Axioms are Σ_1 -correct

Theorem (Miyamoto 1998 for proper forcing) For any forcing class Γ and regular cardinals $\lambda \ge \kappa > \omega_1$, $BFA_{<\kappa}^{<\lambda}(\Gamma)$ is equivalent to Σ_1 - $CBFA_{<\kappa}^{<\lambda}(\Gamma)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Standard Forcing Axioms are Σ_1 -correct

Theorem (Miyamoto 1998 for proper forcing) For any forcing class Γ and regular cardinals $\lambda \ge \kappa > \omega_1$, $BFA_{<\kappa}^{<\lambda}(\Gamma)$ is equivalent to Σ_1 - $CBFA_{<\kappa}^{<\lambda}(\Gamma)$.

Proof sketch: First prove a bounded version of the Woodin-Jensen characterization using weak genericity. Then for any suitable ϕ , \mathbb{P} , X, \dot{a} , γ , $\Vdash_{\mathbb{P}} \phi(\dot{a})$ is absolute to H_{γ} . If N is transitive and elementarily embeds into H_{γ} and $F \subseteq \overline{\mathbb{P}}$ is $< \overline{\lambda}$ -weakly N-generic, $N^{\overline{\mathbb{P}}}/F \models \phi([\overline{a}]_F), [\overline{a}]_F$ is in the well-founded part of $N^{\overline{\mathbb{P}}}/F$, and it collapses to \overline{a}^F , where bars denote the inverse of the embedding $N \to H_{\gamma}$.

Maximality Principles

(4日) (個) (主) (主) (三) の(の)

Maximality Principles

Definition

(Stavi and Vaananen 2002, Hamkins 2003) For Γ a forcing class, *n* a positive integer, and *S* a class of parameters, $\Sigma_n - MP_{\Gamma}(S)$ is the assertion that for all provably Γ -persistent Σ_n formulas ϕ and $a \in S$ such that there is a $\mathbb{P} \in \Gamma$ which forces $\phi(a)$, then $\phi(a)$ already holds in the ground model.

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 回 ● の Q @

Theorem

(Bagaria 2000 for n = 1)

For any positive integer n and regular cardinal κ , Σ_n - $MP_{\Gamma}(H_{\kappa})$ is equivalent to Σ_n - $CBFA_{<\kappa}^{<\kappa}(\Gamma)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Bagaria 2000 for n = 1) For any positive integer n and regular cardinal κ , Σ_n - $MP_{\Gamma}(H_{\kappa})$ is equivalent to Σ_n - $CBFA_{<\kappa}^{<\kappa}(\Gamma)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof sketch: (\Leftarrow): Use check names

Theorem

(Bagaria 2000 for n=1)

For any positive integer n and regular cardinal κ , Σ_n - $MP_{\Gamma}(H_{\kappa})$ is equivalent to Σ_n - $CBFA_{<\kappa}^{<\kappa}(\Gamma)$.

Proof sketch: (\Leftarrow): Use check names (\Rightarrow): Construct a suitable $N \in H_{\kappa}$ with an elementary embedding $\sigma : N \to H_{\gamma}$ that fixes \dot{a} , then consider the statement "there exists a $< \bar{\kappa}$ -weakly N-generic filter $F \subseteq \bar{\mathbb{P}}$ such that $\phi(\dot{a}^F)$ holds".

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ■ ● 9 Q @

Proposition

If Γ is the class of countably closed forcings or of subcomplete forcings, then $\sum_{2}-CBFA_{<\omega_{2}}^{<\omega_{2}}(\Gamma)$ implies: a) \Diamond b) $\neg KH$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proposition

If Γ is the class of countably closed forcings or of subcomplete forcings, then Σ_2 -CBFA $^{<\omega_2}_{<\omega_2}(\Gamma)$ implies: a) \diamond b) $\neg KH$

Proof.

a) \diamond is a Σ_2 sentence which is forced by the countably closed poset $Add(\omega_1, 1)$, and it is preserved by all subcomplete forcing.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proposition

If Γ is the class of countably closed forcings or of subcomplete forcings, then Σ_2 -CBFA $_{<\omega_2}^{<\omega_2}(\Gamma)$ implies:

Proof.

a) \diamondsuit is a Σ_2 sentence which is forced by the countably closed poset $Add(\omega_1, 1)$, and it is preserved by all subcomplete forcing. b) If T is any ω_1 -tree, subcomplete forcing does not add branches to it, and there is a countably closed forcing which collapses the cardinality of its branches to ω_1 . "T is not a Kurepa tree" is then a Σ_2 formula which can be made true by countably closed forcing and is preserved under arbitrary subcomplete forcing, so it is true in V.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ■ ● 9 Q @

Proposition

If Γ is any nonempty subclass of proper forcing, Σ_2 -CBFA $_{<\kappa}^{<\lambda}(\Gamma)$ (with the added condition that $|N| < \kappa$) implies that for all cardinals θ (regular) and ν with $\nu < \kappa$ and $\theta^{\omega \cdot \nu} < \lambda$, $X \subset \theta$ smaller than κ , and sequences $S = \langle S_\beta | \beta < \nu \rangle$ of stationary subsets of $[\theta]^{\omega}$, then there is a $Y \subset \theta$ such that $X \subseteq Y$, $|Y| < \kappa$, and $S_\beta \cap [Y]^{\omega}$ is stationary in $[Y]^{\omega}$ for all $\beta < \nu$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proposition

If Γ is any nonempty subclass of proper forcing, Σ_2 -CBFA $_{<\kappa}^{<\lambda}(\Gamma)$ (with the added condition that $|N| < \kappa$) implies that for all cardinals θ (regular) and ν with $\nu < \kappa$ and $\theta^{\omega \cdot \nu} < \lambda$, $X \subset \theta$ smaller than κ , and sequences $S = \langle S_\beta | \beta < \nu \rangle$ of stationary subsets of $[\theta]^{\omega}$, then there is a $Y \subset \theta$ such that $X \subseteq Y$, $|Y| < \kappa$, and $S_\beta \cap [Y]^{\omega}$ is stationary in $[Y]^{\omega}$ for all $\beta < \nu$.

Proof sketch: Take $\sigma : N \to H_{\gamma}$ with $rng(\sigma) \cap H_{\kappa}$ transitive, $X \cup \{S, \theta, \nu\} \subseteq rng(\sigma)$, and $\sigma^{-1}(S)$ a sequence of ν stationary subsets of $[\bar{\theta}]^{\omega}$, where $\bar{\theta} := \sigma^{-1}(\theta)$, since stationarity is Π_1 and preserved by proper forcing. Let $Y = \sigma'' \bar{\theta}$.

It can be shown that $\sigma'' \sigma^{-1}(a) = a$ for all $a \in [\theta]^{\omega} \cap rng(\sigma)$ and $\sigma'' \sigma^{-1}(S_{\beta}) = S_{\beta} \cap rng(\sigma) \subseteq S_{\beta} \cap [Y]^{\omega}$. To show that the latter is stationary, fix $\beta < \nu$ and $h : [Y]^{<\omega} \to Y$, and let $h' = \sigma^{-1} \circ h \circ \sigma$.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ■ ● 9 Q @

Proof sketch (continued): By the stationarity of $\sigma^{-1}(S_{\beta})$, there is an $\bar{a} \in \sigma^{-1}(S_{\beta})$ closed under h', so $a := \sigma(\bar{a}) \in \sigma'' \sigma^{-1}(S_{\beta})$, and it is easy to see that $h'' a \subseteq a$. Thus $\sigma'' \sigma^{-1}(S_{\beta})$ is stationary in $[Y]^{\omega}$, so $S_{\beta} \cap [Y]^{\omega}$ is as well. \Box

References

- David Aspero and Joan Bagaria. "Bounded Forcing Axioms and the Continuum". In: Annals of Pure and Applied Logic 109 (2001), pp. 179-203.
- Joan Bagaria. "Bounded Forcing Axioms as Principles of Generic Absoluteness". In: Archive for Mathematical Logic 39 (2000), pp. 393–401.
- Gunter Fuchs. "Subcomplete Forcing Axioms and Definable Well-Orders". 2018. doi: 10.48550/arXiv.1708.08167. url: https://arxiv.org/abs/1708.08167v2
- Joel David Hamkins. "A Simple Maximality Principle". In: The Journal of Symbolic Logic 68.2 (June 2003), pp. 527–550. doi: 10.2178/jsl/1052669062
- Ronald B. Jensen. Forcing Axioms Compatible with CH. Scanned handwritten notes. 2012? url: https://www.mathematik.hu-berlin.de/~raesch/org/jensen.html.
- Tadatoshi Miyamoto. "A Note on Weak Segments of PFA". In: Proceedings of the Sixth Asian Logic Conference: Beijing, China, 20-24 May 1996 (1998), pp. 175–197
- Jonathan Stavi and Jouko Väänänen. "Reflection Principles for the Continuum". In: Logic and Algebra. Ed. by Yi Zhang. Vol. 302. Contemporary Mathematics. American Mathematical Society, 2002, pp. 59–84. isbn: 978-0-8218-2984. doi: http://dx.doi.org/10.1090/conm/302.
- W. Hugh Woodin. The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal. Second revised. de Gruyter Series in Logic and Its Applications 1. De Gruyt, 2010. isbn: 978-3-11-019702-0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00