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Parameters TOC

Parameters are free variables in various axiom schemata in PA,
ZFC, and other similar theories. Given an axiom schema S, we let
S∗ be the parameter-free sub-schema.

Kreisel (A survey of proof theory, JSL 1968) was one of those who
paid attention to the comparison of some schemata in second-order
PA and their parameter-free versions. In particular, Kreisel noted that

[...] if one is convinced of the significance of something like
a given axiom schema, it is natural to study details, such as
the effect of parameters.

This talk is devoted to the effect of parameters in the schemata of
Comprehension and Choice in second-order arithmetic.
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Preliminaries TOC
The second order Peano arithmetic PA2 is a theory in the language
L(PA2) with two sorts of variables – for natural numbers j , k , m, n
and for sets of them x , y , z . The axioms are as follows:

1 Peano’s axioms for numbers.
2 Induction Φ(0) ∧ ∀ k

(
Φ(k) =⇒ Φ(k + 1)

)
=⇒ ∀ k Φ(k),

for every formula Φ(k) in L(PA2), and we allow parameters in
Φ(k), i. e., free variables other than k .

3 Extensionality for sets.
4 Comprehension CA: ∃ x ∀ k

(
k ∈ x ⇐⇒ Φ(k)

)
,

for every formula Φ in which the variable x does not occur, and
we allow parameters in Φ.

CA∗ is the parameter-free sub-schema of CA (that is, Φ(k) contains
no free variables other than k ).
PA∗

2 is the subsystem of PA2 with CA replaced by CA∗ .
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The problem we consider TOC

Is PA∗
2 strictly weaker than PA2? Depends.

In the sense of consistency, the answer is NO.
Harvey Friedman (near 1980) established that the theories
PA2 and PA∗

2 are equiconsistent .

We study the problem in the context of deductive strength, and we
obtain the opposite answer.
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First theorem TOC
Theorem 1
PA∗

2 does not prove that every set has its complement.
Proof (sketch)
Let L be the constructible universe.
Consider a generic extension L[⃗a] obtained by adjoining a Cohen
generic sequence a⃗ = ⟨an⟩n<ω of sets an ⊆ ω to L.
Let X = (P(ω) ∩ L) ∪ {an : n < ω}.
Then X is an ω -model of PA∗

2 in which sets an do not have their
complements, and hence the full CA fails.
The proof of CA∗ in X is based on the standard homogeneity and
permutation-related properties of the forcing notion Cω involved,
which is the finite-support product of the Cohen forcing C.

Thus PA∗
2 does not prove a simple consequence of the full CA.
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Second theorem TOC

Theorem 2
PA∗

2 + CA(Σ1
2) does not prove a certain instance of the full CA.

CA(Σ1
2) is CA restricted to Σ1

2 formulas (with parameters).
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Theorem 2 proof sketch, basic model TOC

Let L be the constructible universe.

Using a version of the product/iterated Sacks forcing, we define:

the index set I = (ω1)<ω r {Λ} ∈ L — ω1 is used for ωL
1 ;

reals bs ⊆ ω , s ∈ I, such that each bsaα is Sacks generic over L[bs ],
and in addition we put bΛ = ∅ for the empty tuple Λ;

the whole array b⃗ = ⟨bs⟩s∈I of those reals.

the generic extension L[b⃗], which is the basic model.

This is a kind of generalized iteration of the Sacks forcing, along the index
set I; we may call it an arboreal iteration.
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Theorem 2 proof sketch, the forcing TOC
The version P, of the product/iterated Sacks forcing we use, consists of
all forcing conditions defined in L as follows.

A Let ξ ⊆ I be any countable initial segment of the index set
I = (ω1)<ω r {Λ}.

B We consider P(ω) as identic to 2ω, so that both P(ω) and P(ω)ξ

are Polich compact spaces;

C Let H : P(ω)ξ → P(ω)ξ be a homeomorphism, projection-keeping
in the sense that if η ⊆ ξ is an initial segment and x , y ∈ P(ω)ξ

then x � η = y � η ⇐⇒ H(x) � η = H(y) � η .
Consider the (closed) set XH = ran H = {H(x) : x ∈ P(ω)ξ}.

D The forcing P consists of all such sets XH ; put dim XH = ξ .

E Put X ≤ Y (X is stronger) iff η = dim Y ⊆ dim X and X � η ⊆ Y .

This is a kind of generalized iteration of the Sacks forcing.
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Strict successor lemma TOC

Lemma (strict successor lemma)
Let s ∈ I ∪ {Λ}.

i If γ < ω1 then bsaγ is a strict successor of bs in the sense that
bs <L bsaγ and if x ⊆ ω, x <L bsaγ then x ≤L bs .

ii If y ∈ L[b⃗], y ⊆ ω is a strict successor of bs then there is an ordinal
γ < ω1 such that y ≡L bsaγ .
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The submodel TOC

Consider the set

W = W (b⃗) = {bγ : γ < ω1} ∪ {bγa0n : γ < ω1 ∧ n < ω} ∪
∪ {bγa0na1 : γ < ω1 ∧ n ∈ bγa1}.

Thus W ∈ L[b⃗].

Let X =
(⋃

Z⊆W finite
L[Z ]

)
∩ P(ω).

Then X proves Theorem 2 .
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Model 2: picture TOC
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Theorem 2 proof sketch, end TOC
Consider the set

W = {bγ : γ < ω1} ∪ {bγa0n : γ < ω1 ∧ n < ω} ∪
∪ {bγa0na1 : γ < ω1 ∧ n ∈ bγa1}.

Thus W ∈ L[b⃗]. Let X =
(⋃

Z⊆W finite
L[Z ]

)
∩ P(ω).

Then X proves Theorem 2 .

X is a model of PA∗
2 by the permutation technique,

X is a model of CA(Σ1
2) by the Shoenfield absoluteness,

the sets bγa1 do not belong to X by construction,

yet each bγa1 is definable in X , with bγ as the only parameter, by
means of the structure of the Sacksness above bγ and the
Lemma on strict succesors — thus CA fails in X .

More specifically, CA(Σ1
4) fails.
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A finite axiomatizability problem TOC

Prove that PA2 is not finitely axiomatizable over PA∗
2 .

More specifically, prove that, for any n ≥ 2,
PA∗

2 + CA(Σ1
n) does not imply an instance of

CA∗(Σ1
n+1).

Case n = 2 is partially established by the proof of
Theorem 2 above, as the counterexample is unfortunately
more complicated than Σ1

3 as of yet.
Work in progress.
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Parameters in the Choice schema TOC
Choice, ACω : ∀ k ∃ x Φ(k, x) =⇒ ∃ x ∀ k Φ(k, (x)k),

where (x)k = {m : 2m(2k + 1) − 1 ∈ x}.

Dependent Choice, DC: ∀ x ∃ y Φ(x , y) =⇒ ∃ x ∀ k Φ((x)k , (x)k+1).

Let AC∗
ω be the parameter-free sub-schema. (DC ⇐⇒ DC∗ is known.)

The Levy model for PA2 + ¬AC∗
ω : extend L by the Levy-collapse below

ℵω , so that ℵ1 = ℵL
ω holds in the extension.

Guzicki’s model for PA2 + AC∗
ω + ¬ACω : extend L by the Levy-collapse

below ℵω1 , so that ℵ1 = ℵL
ω1 holds in the extension. (Any real that codes

a collapse of ℵL
1 can serve as a parameter for the violation of ACω .)

A common shortcoming of the two models: the necessary use of
cardinals out of the scope of PA2 in the collapse forcing method.

We’ll show how to fix this problem. We’ll present non-collapse models
for PA2 + ¬AC∗

ω , for PA2 + AC∗
ω + ¬ACω , and for PA2 + ACω + ¬DC.
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A non-collapse model for ¬AC∗
ω TOC

We start with the same arboreal Sacks generic extension L[b⃗] (the basic
model), where b⃗ = ⟨bs⟩s∈I is a P-generic array of reals bs ⊆ ω , such that
each bsaα is Sacks generic over L[bs ].

Recall that I = (ω1)<ω r {Λ} ∈ L is the index set.

We let Ω ∈ L be the set of all countable or finite initial segments ξ ⊆ I
such that there is a number n = nξ < ω with dom s ≤ n for all s ∈ ξ .

Let W = W (Ω, b⃗) = {b⃗ � ξ : ξ ∈ Ω}; then W ∈ L[b⃗].

Theorem (a non-collapse model for PA2 + ¬AC∗
ω )

Under the assumptions above, the class M = HOD(W ), of all sets
hereditarily W -ordinal-definable in L[b⃗] (parameters are elements of
W ), is a model of ZF in which the countable parameter-free AC∗

ω fails.
Accordingly, if X = P(ω) ∩ M , then X is a model of PA2 + ¬AC∗

ω.
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Two more non-collapse models TOC
We work with the same arboreal Sacks generic extension L[b⃗].
Let Ω′ ∈ L be the set of all ctble initial segments ξ ⊆ I such that for any
α < ω1 there is n < ω satisfying dom s ≤ n for all s ∈ ξ with s(0) = α .

Let Ω′′ ∈ L be the set of all countable well-founded initial segments ξ ⊆ I.
We put W ′ = {b⃗ � ξ : ξ ∈ Ω′} and W ′′ = {b⃗ � ξ : ξ ∈ Ω′′}.

Theorem (two non-collapse models)

Under the assumptions above, it is true in L[b⃗] that:

i the class M ′ = HOD(W ′) is a model of ZF in which the ctble
param.-free AC∗

ω holds but the ctble ACω with parameters fails.

ii the class M ′′ = HOD(W ′′) is a model of ZF in which the
countable ACω holds but DC fails. — Jensen’s old technique.

Accordingly, P(ω) ∩ M ′ is a model of PA2 + AC∗
ω + ¬ACω ,

whereas P(ω) ∩ M ′′ is a model of PA2 + ACω + ¬DC.
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Conclusions TOC

Non-cardinal-collapse models are presented for the following theories:

1 PA∗
2 + ¬CA — by means of the Cohen forcing

2 PA∗
2 + CA(Σ1

2) + ¬CA — this and ff by arboreal Sacks iterations,
the counter-example estimated to be CA(Σ1

4);

3 PA2 + ¬AC∗
ω — with a Π1

3 counter-example;

4 PA2 + AC∗
ω + ¬ACω — with a Π1

3 counter-example; ;

5 PA2 + ACω + ¬DC — with a Π1
3 counter-example. —

Gitman-SDF-K, 2019, JML — with a Π1
2 counterexample but using

a way more complicated technique of iterated Jensen-minimal forcing.

All ensuing consistency results do not involve cardinal collapse and are
manageable on the base of ZFC− (sans the Power Set axiom), hence in
principle on the base of PA2 itself.
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