On the significance of parameters in the comprehension and choice schemata in second-order arithmetic

Vladimir Kanovei (IITP, Moscow)

NY Set Theory Seminar December 2022

Table of contents

- Parameters
- Preliminaries
- The problem we consider
- First theorem
- Second theorem
- Theorem 2 proof sketch, the forcing
- Theorem 2 proof sketch, basic model
- Strict successor lemma
- The submodel
- Model 2: picture
- Theorem 2 proof sketch, end
- A finite axiomatizability problem
- Parameters in the Choice schema
- A non-collapse model for $\neg \mathbf{A C}_{\omega}^{*}$
- Two more non-collapse models
- Conclusions

Parameters

Parameters are free variables in various axiom schemata in PA, ZFC, and other similar theories. Given an axiom schema S, we let \mathbf{S}^{*} be the parameter-free sub-schema.

Kreisel (A survey of proof theory, JSL 1968) was one of those who paid attention to the comparison of some schemata in second-order PA and their parameter-free versions. In particular, Kreisel noted that
[...] if one is convinced of the significance of something like a given axiom schema, it is natural to study details, such as the effect of parameters.

This talk is devoted to the effect of parameters in the schemata of Comprehension and Choice in second-order arithmetic.

Preliminaries

The second order Peano arithmetic $\mathbf{P A}_{2}$ is a theory in the language $\mathcal{L}\left(\mathbf{P A}_{2}\right)$ with two sorts of variables - for natural numbers j, k, m, n and for sets of them x, y, z. The axioms are as follows:
1 Peano's axioms for numbers.
2 Induction $\Phi(0) \wedge \forall k(\Phi(k) \Longrightarrow \Phi(k+1)) \Longrightarrow \forall k \Phi(k)$, for every formula $\Phi(k)$ in $\mathcal{L}\left(\mathbf{P A}_{2}\right)$, and we allow parameters in $\Phi(k)$, i.e., free variables other than k.
3 Extensionality for sets.
4 Comprehension CA: $\exists x \forall k(k \in x \Longleftrightarrow \Phi(k))$, for every formula Φ in which the variable x does not occur, and we allow parameters in Φ.
CA* is the parameter-free sub-schema of CA (that is, $\Phi(k)$ contains no free variables other than k).
PA_{2}^{*} is the subsystem of $\mathbf{P A}_{2}$ with $\mathbf{C A}$ replaced by $\mathbf{C A}^{*}$.

Is $\mathbf{P A}_{2}^{*}$ strictly weaker than $\mathbf{P A}_{2}$?

Depends.

In the sense of consistency, the answer is NO.
Harvey Friedman (near 1980) established that the theories $\mathbf{P A}_{2}$ and $\mathbf{P A}_{2}^{*}$ are equiconsistent.

We study the problem in the context of deductive strength, and we obtain the opposite answer.

First theorem

Theorem 1

$\mathbf{P A}_{2}^{*}$ does not prove that every set has its complement.

Proof (sketch)

Let \mathbf{L} be the constructible universe.
Consider a generic extension $\mathbf{L}[\vec{a}]$ obtained by adjoining a Cohen generic sequence $\vec{a}=\left\langle a_{n}\right\rangle_{n<\omega}$ of sets $a_{n} \subseteq \omega$ to \mathbf{L}. Let $X=(\mathscr{P}(\omega) \cap \mathbf{L}) \cup\left\{a_{n}: n<\omega\right\}$.
Then X is an ω-model of $\mathbf{P A}_{2}^{*}$ in which sets a_{n} do not have their complements, and hence the full CA fails.

The proof of CA* in X is based on the standard homogeneity and permutation-related properties of the forcing notion \mathbb{C}^{ω} involved, which is the finite-support product of the Cohen forcing \mathbb{C}.

Thus $\mathbf{P A}_{2}^{*}$ does not prove a simple consequence of the full $\mathbf{C A}$.

Second theorem

Theorem 2
 $\mathbf{P A}_{2}^{*}+\mathbf{C A}\left(\boldsymbol{\Sigma}_{2}^{1}\right)$ does not prove a certain instance of the full CA.

$\mathbf{C A}\left(\boldsymbol{\Sigma}_{2}^{1}\right)$ is $\mathbf{C A}$ restricted to Σ_{2}^{1} formulas (with parameters).

Second theorem

Theorem 2
 $\mathbf{P A}_{2}^{*}+\mathbf{C A}\left(\boldsymbol{\Sigma}_{2}^{1}\right)$ does not prove a certain instance of the full CA.

$\mathbf{C A}\left(\boldsymbol{\Sigma}_{2}^{1}\right)$ is $\mathbf{C A}$ restricted to Σ_{2}^{1} formulas (with parameters).

Theorem 2 proof sketch, basic model

Let \mathbf{L} be the constructible universe.
Using a version of the product/iterated Sacks forcing, we define:

- the index set $\mathbb{\square}=\left(\omega_{1}\right)^{<\omega} \backslash\{\Lambda\} \in \mathbf{L} \quad-\quad \omega_{1}$ is used for $\omega_{1}^{\mathbf{L}}$;
- reals $b_{s} \subseteq \omega, s \in \mathbb{\mathbb { }}$, such that each $b_{s \curvearrowright \alpha}$ is Sacks generic over $\mathbf{L}\left[b_{s}\right]$, and in addition we put $b_{\Lambda}=\varnothing$ for the empty tuple Λ;
- the whole array $\vec{b}=\left\langle b_{s}\right\rangle_{s \in \square}$ of those reals.
- the generic extension $\mathrm{L}[\vec{b}]$, which is the basic model.

This is a kind of generalized iteration of the Sacks forcing, along the index set $\mathbb{\square}$; we may call it an arboreal iteration.

Theorem 2 proof sketch, the forcing

The version \mathbb{P}, of the product/iterated Sacks forcing we use, consists of all forcing conditions defined in \mathbf{L} as follows.

A Let $\xi \subseteq \mathbb{\square}$ be any countable initial segment of the index set $\square=\left(\omega_{1}\right)^{<\omega} \backslash\{\Lambda\}$.

B We consider $\mathscr{P}(\omega)$ as identic to 2^{ω}, so that both $\mathscr{P}(\omega)$ and $\mathscr{P}(\omega)^{\xi}$ are Polich compact spaces;

C Let $H: \mathscr{P}(\omega)^{\xi} \rightarrow \mathscr{P}(\omega)^{\xi}$ be a homeomorphism, projection-keeping in the sense that if $\eta \subseteq \xi$ is an initial segment and $x, y \in \mathscr{P}(\omega)^{\xi}$ then $x \upharpoonright \eta=y \upharpoonright \eta \Longleftrightarrow H(x) \upharpoonright \eta=H(y) \upharpoonright \eta$.
Consider the (closed) set $X_{H}=\operatorname{ran} H=\left\{H(x): x \in \mathscr{P}(\omega)^{\xi}\right\}$.
D The forcing \mathbb{P} consists of all such sets X_{H}; put $\operatorname{dim} X_{H}=\xi$.
E Put $X \leq Y$ (X is stronger) iff $\eta=\operatorname{dim} Y \subseteq \operatorname{dim} X$ and $X \upharpoonright \eta \subseteq Y$.
This is a kind of generalized iteration of the Sacks forcing.

Theorem 2 proof sketch, basic model

Let \mathbf{L} be the constructible universe.
Using the forcing notion \mathbb{P}, we define:

- the index set $\mathbb{\square}=\left(\omega_{1}\right)^{<\omega} \backslash\{\Lambda\} \in \mathbf{L}$;
- reals $b_{s} \subseteq \omega, s \in \mathbb{\mathbb { }}$, such that each $b_{s \curvearrowright \alpha}$ is Sacks generic over $\mathbf{L}\left[b_{s}\right]$, and in addition we put $b_{\Lambda}=\varnothing$ for the empty tuple Λ;
- the whole \mathbb{P}-generic array $\vec{b}=\left\langle b_{s}\right\rangle_{s \in \mathbb{I}}$ of those reals.
- the \mathbb{P}-generic extension $\mathrm{L}[\vec{b}]$, which is the basic model.

This is a kind of generalized iteration of the Sacks forcing, along the index set $\mathbb{\square}$; we may call it an arboreal iteration.

Strict successor lemma

Lemma (strict successor lemma)

Let $s \in \mathbb{\cup} \cup\{\Lambda\}$.
i If $\gamma<\omega_{1}$ then $b_{s^{\urcorner} \gamma}$ is a strict successor of b_{s} in the sense that $b_{s}<_{\mathbf{L}} b_{s^{\prime} \gamma}$ and if $x \subseteq \omega, x<_{\mathbf{L}} b_{s^{\prime} \gamma}$ then $x \leq_{\mathbf{L}} b_{s}$.
ii If $y \in \mathbf{L}[\vec{b}], y \subseteq \omega$ is a strict successor of b_{s} then there is an ordinal $\gamma<\omega_{1}$ such that $y \equiv \mathrm{~L} b_{s}$. .

Strict successor lemma

Lemma (strict successor lemma)

Let $s \in \mathbb{\cup} \cup\{\Lambda\}$.
i If $\gamma<\omega_{1}$ then $b_{s^{\urcorner} \gamma}$ is a strict successor of b_{s} in the sense that $b_{s}<_{\mathbf{L}} b_{s^{\prime} \gamma}$ and if $x \subseteq \omega, x<_{\mathbf{L}} b_{s^{\prime} \gamma}$ then $x \leq_{\mathbf{L}} b_{s}$.
ii If $y \in \mathbf{L}[\vec{b}], y \subseteq \omega$ is a strict successor of b_{s} then there is an ordinal $\gamma<\omega_{1}$ such that $y \equiv \mathrm{~L} b_{s}$. .

The submodel

Consider the set

$$
\begin{aligned}
W=W(\vec{b})=\left\{b_{\gamma}: \gamma<\omega_{1}\right\} & \cup\left\{b_{\gamma-0^{n}}: \gamma<\omega_{1} \wedge n<\omega\right\} \cup \\
& \cup\left\{b_{\gamma-0^{n}-1}: \gamma<\omega_{1} \wedge n \in b_{\gamma-1}\right\} .
\end{aligned}
$$

Thus $W \in \mathbf{L}[\vec{b}]$.

Let $X=\left(\bigcup_{Z \subseteq W \text { finite }} \mathrm{L}[Z]\right) \cap \mathscr{P}(\omega)$.

Then \boldsymbol{X} proves Theorem 2.

The submodel

Consider the set

$$
\begin{aligned}
W=W(\vec{b})=\left\{b_{\gamma}: \gamma<\omega_{1}\right\} & \cup\left\{b_{\gamma-0^{n}}: \gamma<\omega_{1} \wedge n<\omega\right\} \cup \\
& \cup\left\{b_{\gamma-0^{n}-1}: \gamma<\omega_{1} \wedge n \in b_{\gamma-1}\right\} .
\end{aligned}
$$

Thus $W \in \mathbf{L}[\vec{b}]$.

$$
\text { Let } X=\left(\bigcup_{Z \subseteq W \text { finite }} \mathrm{L}[Z]\right) \cap \mathscr{P}(\omega) \text {. }
$$

Then \boldsymbol{X} proves Theorem 2.

Model 2: picture

TOC

Theorem 2 proof sketch, end

Consider the set

$$
\begin{aligned}
W=\left\{b_{\gamma}: \gamma<\omega_{1}\right\} \cup\left\{b_{\gamma 0^{n}}: \gamma<\omega_{1}\right. & \wedge n<\omega\} \cup \\
& \cup\left\{b_{\gamma 0^{n}-1}: \gamma<\omega_{1} \wedge n \in b_{\gamma-1}\right\} .
\end{aligned}
$$

Thus $W \in \mathbf{L}[\vec{b}]$. Let $X=\left(\bigcup_{Z \subseteq W \text { finite }} \mathbf{L}[Z]\right) \cap \mathscr{P}(\omega)$.

Then \boldsymbol{X} proves Theorem 2.

- X is a model of $\mathbf{P A}_{2}^{*}$ by the permutation technique,
- X is a model of $\mathbf{C A}\left(\boldsymbol{\Sigma}_{2}^{1}\right)$ by the Shoenfield absoluteness,
- the sets $b_{\gamma 人 1}$ do not belong to X by construction,
- yet each $b_{\gamma-1}$ is definable in X, with b_{γ} as the only parameter, by means of the structure of the Sacksness above b_{γ} and the Lemma on strict succesors - thus CA fails in X.
More specifically, CA(Σ_{4}^{1}) fails.

A finite axiomatizability problem

Prove that $\mathbf{P A}_{2}$ is not finitely axiomatizable over $\mathbf{P A}_{2}^{*}$.

More specifically, prove that, for any $n \geq 2$, $\mathbf{P A}_{2}^{*}+\mathbf{C A}\left(\boldsymbol{\Sigma}_{n}^{1}\right)$ does not imply an instance of CA ${ }^{*}\left(\Sigma_{n+1}^{1}\right)$.

Case $n=2$ is partially established by the proof of Theorem 2 above, as the counterexample is unfortunately more complicated than Σ_{3}^{1} as of yet.
Work in progress.

Parameters in the Choice schema

Choice, $\mathrm{AC}_{\omega}: \forall k \exists x \Phi(k, x) \Longrightarrow \exists x \forall k \Phi\left(k,(x)_{k}\right)$, where $(x)_{k}=\left\{m: 2^{m}(2 k+1)-1 \in x\right\}$.

Dependent Choice, DC: $\forall x \exists y \Phi(x, y) \Longrightarrow \exists x \forall k \Phi\left((x)_{k},(x)_{k+1}\right)$.
Let AC_{ω}^{*} be the parameter-free sub-schema. ($\mathrm{DC} \Longleftrightarrow \mathrm{DC}^{*}$ is known.)
The Levy model for $\mathrm{PA}_{2}+\neg \mathbf{A C}_{\omega}^{*}$: extend \mathbf{L} by the Levy-collapse below \aleph_{ω}, so that $\aleph_{1}=\aleph_{\omega}^{L}$ holds in the extension.

Guzicki's model for $\mathbf{P A}_{2}+\mathbf{A C}_{\omega}^{*}+\neg \mathbf{A} \mathbf{C}_{\omega}$: extend \mathbf{L} by the Levy-collapse below $\aleph_{\omega_{1}}$, so that $\aleph_{1}=\aleph_{\omega_{1}}^{L}$ holds in the extension. (Any real that codes a collapse of \aleph_{1}^{L} can serve as a parameter for the violation of $\mathbf{A C}_{\omega}$.)

A common shortcoming of the two models: the necessary use of cardinals out of the scope of PA_{2} in the collapse forcing method.

We'll show how to fix this problem. We'll present non-collapse models for $\mathbf{P A}_{2}+\neg \mathbf{A C}_{\omega}^{*}$, for $\mathbf{P A}_{2}+\mathbf{A C}_{\omega}^{*}+\neg \mathbf{A C} \mathbf{C}_{\omega}$, and for $\mathbf{P A}_{2}+\mathbf{A C} \mathbf{C}_{\omega}+\neg \mathbf{D C}$.

A non-collapse model for $\neg \mathrm{AC}_{\omega}^{*}$

We start with the same arboreal Sacks generic extension $\mathbf{L}[\vec{b}]$ (the basic model), where $\vec{b}=\left\langle b_{s}\right\rangle_{s \in 0}$ is a \mathbb{P}-generic array of reals $b_{s} \subseteq \omega$, such that each $b_{s\urcorner \alpha}$ is Sacks generic over $\mathrm{L}\left[b_{s}\right]$.

Recall that $\mathbb{\square}=\left(\omega_{1}\right)^{<\omega} \backslash\{\Lambda\} \in \mathbf{L}$ is the index set.
We let $\Omega \in \mathbf{L}$ be the set of all countable or finite initial segments $\xi \subseteq \mathbb{\square}$ such that there is a number $n=n_{\xi}<\omega$ with $\operatorname{dom} s \leq n$ for all $s \in \xi$.

Let $W=W(\Omega, \vec{b})=\{\vec{b} \upharpoonright \xi: \xi \in \Omega\}$; then $W \in \mathbf{L}[\vec{b}]$.

Theorem (a non-collapse model for $\mathrm{PA}_{2}+\neg \mathrm{AC}_{\omega}^{*}$)

Under the assumptions above, the class $\mathfrak{M}=\mathbf{H O D}(W)$, of all sets hereditarily W-ordinal-definable in $\mathrm{L}[\vec{b}]$ (parameters are elements of W), is a model of $\mathbf{Z F}$ in which the countable parameter-free $\mathbf{A C}_{\omega}^{*}$ fails. Accordingly, if $X=\mathscr{P}(\omega) \cap \mathfrak{M}$, then X is a model of $\mathbf{P A}_{2}+\neg \mathbf{A C}_{\omega}^{*}$.

A non-collapse model for $\neg \mathrm{AC}_{\omega}^{*}$

We start with the same arboreal Sacks generic extension $\mathbf{L}[\vec{b}]$ (the basic model), where $\vec{b}=\left\langle b_{s}\right\rangle_{s \in 0}$ is a \mathbb{P}-generic array of reals $b_{s} \subseteq \omega$, such that each $b_{s\urcorner \alpha}$ is Sacks generic over $\mathrm{L}\left[b_{s}\right]$.

Recall that $\mathbb{\square}=\left(\omega_{1}\right)^{<\omega} \backslash\{\Lambda\} \in \mathbf{L}$ is the index set.
We let $\Omega \in \mathbf{L}$ be the set of all countable or finite initial segments $\xi \subseteq \mathbb{\square}$ such that there is a number $n=n_{\xi}<\omega$ with $\operatorname{dom} s \leq n$ for all $s \in \xi$.

$$
\text { Let } W=W(\Omega, \vec{b})=\{\vec{b} \upharpoonright \xi: \xi \in \Omega\} ; \text { then } W \in \mathbf{L}[\vec{b}] .
$$

Theorem (a non-collapse model for $\mathrm{PA}_{2}+\neg \mathrm{AC}_{\omega}^{*}$)

Under the assumptions above, the class $\mathfrak{M}=\mathbf{H O D}(W)$, of all sets hereditarily W-ordinal-definable in $\mathrm{L}[\vec{b}]$ (parameters are elements of W), is a model of $\mathbf{Z F}$ in which the countable parameter-free $\mathbf{A C}_{\omega}^{*}$ fails. Accordingly, if $X=\mathscr{P}(\omega) \cap \mathfrak{M}$, then X is a model of $\mathbf{P A}_{2}+\neg \mathbf{A C}_{\omega}^{*}$.

Two more non-collapse models

We work with the same arboreal Sacks generic extension $\mathbf{L}[\vec{b}]$.
Let $\Omega^{\prime} \in \mathbf{L}$ be the set of all ctble initial segments $\xi \subseteq \mathbb{\square}$ such that for any $\alpha<\omega_{1}$ there is $n<\omega$ satisfying dom $s \leq n$ for all $s \in \xi$ with $s(0)=\alpha$.
Let $\Omega^{\prime \prime} \in \mathbf{L}$ be the set of all countable well-founded initial segments $\xi \subseteq \mathbb{0}$.
We put $W^{\prime}=\left\{\vec{b} \upharpoonright \xi: \xi \in \Omega^{\prime}\right\}$ and $W^{\prime \prime}=\left\{\vec{b} \upharpoonright \xi: \xi \in \Omega^{\prime \prime}\right\}$.

Theorem (two non-collapse models)

Under the assumptions above, it is true in $\mathrm{L}[\vec{b}]$ that:
i the class $\mathfrak{M}^{\prime}=\operatorname{HOD}\left(W^{\prime}\right)$ is a model of $\mathbf{Z F}$ in which the ctble param.-free $\mathbf{A C}_{\omega}^{*}$ holds but the ctble $\mathbf{A C}_{\omega}$ with parameters fails.
ii the class $\mathfrak{M}^{\prime \prime}=\mathbf{H O D}\left(W^{\prime \prime}\right)$ is a model of $\mathbf{Z F}$ in which the countable $\mathbf{A C}_{\omega}$ holds but DC fails. - Jensen's old technique.

Accordingly, $\mathscr{P}(\omega) \cap \mathfrak{M}^{\prime}$ is a model of $\mathbf{P A}_{2}+\mathbf{A C}_{\omega}^{*}+\neg \mathbf{A} \mathbf{C}_{\omega}$, whereas $\mathscr{P}(\omega) \cap \mathfrak{M}^{\prime \prime}$ is a model of $\mathbf{P A}_{2}+\mathbf{A C} \mathbf{C l}_{\omega}+\neg \mathbf{D C}$.

Two more non-collapse models

We work with the same arboreal Sacks generic extension $\mathbf{L}[\vec{b}]$.
Let $\Omega^{\prime} \in \mathbf{L}$ be the set of all ctble initial segments $\xi \subseteq \mathbb{\square}$ such that for any $\alpha<\omega_{1}$ there is $n<\omega$ satisfying dom $s \leq n$ for all $s \in \xi$ with $s(0)=\alpha$.
Let $\Omega^{\prime \prime} \in \mathbf{L}$ be the set of all countable well-founded initial segments $\xi \subseteq \mathbb{0}$.
We put $W^{\prime}=\left\{\vec{b} \upharpoonright \xi: \xi \in \Omega^{\prime}\right\}$ and $W^{\prime \prime}=\left\{\vec{b} \upharpoonright \xi: \xi \in \Omega^{\prime \prime}\right\}$.

Theorem (two non-collapse models)

Under the assumptions above, it is true in $\mathrm{L}[\vec{b}]$ that:
i the class $\mathfrak{M}^{\prime}=\operatorname{HOD}\left(W^{\prime}\right)$ is a model of $\mathbf{Z F}$ in which the ctble param.-free $\mathbf{A C}_{\omega}^{*}$ holds but the ctble $\mathbf{A C}_{\omega}$ with parameters fails.
ii the class $\mathfrak{M}^{\prime \prime}=\mathbf{H O D}\left(W^{\prime \prime}\right)$ is a model of $\mathbf{Z F}$ in which the countable $\mathbf{A C}_{\omega}$ holds but DC fails. - Jensen's old technique.

Accordingly, $\mathscr{P}(\omega) \cap \mathfrak{M}^{\prime}$ is a model of $\mathbf{P A}_{2}+\mathbf{A C}_{\omega}^{*}+\neg \mathbf{A} \mathbf{C}_{\omega}$, whereas $\mathscr{P}(\omega) \cap \mathfrak{M}^{\prime \prime}$ is a model of $\mathbf{P A}_{2}+\mathbf{A C} \mathbf{C l}_{\omega}+\neg \mathbf{D C}$.

Conclusions

Non-cardinal-collapse models are presented for the following theories:
$1 \mathbf{P A}_{2}^{*}+\neg \mathbf{C A} \quad-\quad$ by means of the Cohen forcing
$2 \mathbf{P A}_{2}^{*}+\mathbf{C A}\left(\boldsymbol{\Sigma}_{2}^{1}\right)+\neg \mathbf{C A}$ - this and $\mathbf{f f}$ by arboreal Sacks iterations, the counter-example estimated to be $\mathbf{C A}\left(\boldsymbol{\Sigma}_{4}^{1}\right)$;
$3 \mathbf{P A}_{2}+\neg \mathbf{A C}_{\omega}^{*}$ - with a Π_{3}^{1} counter-example;
$4 \mathbf{P A}_{2}+\mathbf{A C}_{\omega}^{*}+\neg \mathbf{A C}_{\omega}$ - with a Π_{3}^{1} counter-example; ;
$5 \mathbf{P A}_{2}+\mathbf{A C}_{\omega}+\neg \mathbf{D C} \quad-\quad$ with a Π_{3}^{1} counter-example. Gitman-SDF-K, 2019, JML — with a Π_{2}^{1} counterexample but using a way more complicated technique of iterated Jensen-minimal forcing.

All ensuing consistency results do not involve cardinal collapse and are manageable on the base of $\mathbf{Z F C}^{-}$(sans the Power Set axiom), hence in principle on the base of PA_{2} itself.

The speaker thanks the organizers for the opportunity to give this talk

The speaker thanks everybody for interest and patience

