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Arithmetic and finite set theory
The correspondence — does it work for bounded arithmetic?

FST : PA = ? : I∆0

FST = Finite Set Theory
= ZF− Inf + ¬Inf ( + TC )

TC = Axiom of Transitive Containment

I FST and PA are mutually interpretable. Small print

I Any model of PA is isomorphic to the
arithmetic of the ordinals of a model of FST.



Arithmetic and finite set theory
The correspondence via Ackermann’s interpretation

Let x ∈Ack y be the predicate expressing that the
coefficient of 2x in the binary expansion of y is 1.
Then
I 〈N,∈Ack〉 ∼= 〈Vω,∈〉.
I If M |= PA, then AckM =df 〈M,∈M

Ack〉 |= FST
and its ordinals are isomorphic to M.

I Corollary: PA interprets FST.



Arithmetic and finite set theory
The correspondence via induction

I Adjunction: x; y = x ∪ {y}
I Work in the language L(0;)

I ∈ is definable: y ∈ x ↔ x; y = x
I PS0 consists of:

0; x 6= 0

[x; y]; z = [x; z]; y

[x; y]; z = x; y ↔ x; z = x ∨ z = y



Arithmetic and finite set theory
The correspondence via induction

Tarski-Givant induction:

ϕ(0) ∧ ∀x∀y(ϕ(x) ∧ ϕ(y)→ ϕ(x; y)) → ∀xϕ(x).

PS consists of PS0 together with induction for each
first order ϕ (with parameters). (Previale)
I PS is logically equivalent to

ZF− Inf + ¬Inf + TC
I We’re "arithmetizing" set theory in the sense of

basing it on an induction principle over a
successor operator.



IΣ1S
is enough to Ackermannize

IΣ1S has induction for Σ1 formulæ in the Lévy
hierarchy.

PS : PA = IΣ1S : IΣ1

I If M |= IΣ1, then AckM |= IΣ1S and the ordinals
of AckM, together with the restrictions of
addition and multiplication to them, are
isomorphic to M.

I Parsons’ Theorem transfers to set theory: the
primitive recursive set functions are those
provably total in IΣ1S, where...



The primitive recursive set functions

are obtained from the initial functions
I the constant function 0̃(~x) = 0,
I projections, and
I adjunction x; y,

by closing under
I substitutions f (~x) = g(h1(~x), · · · , hk(~x))

I and recursion of form

f (0,~z) = g(~z)
f ([a; p],~z) = h(a, p, f (a,~z), f (p,~z),~z)



L(0 ;<)
"Bounded with respect to what?" — a transitive relation is needed . . .

. . . so we add < to our language, intended to mean
the transitive closure of the ∈ relation.
Let PS<

0 be the result of adding to PS0:

x 6< 0 and x < y; z ↔ x < y ∨ x ≤ z

Then we define the class of ∆0 formulæ in the
expanded language by allowing bounded
quantification of form ∀y < t, ∃y < t where t is a
term. And we define I∆0S to be PS<

0 together with
induction for ∆0 formulæ in the expanded language.
I In IΣ1S this doesn’t matter because we have the

transitive closure so < is definable in L(0 ; ).



The primitive recursive set functions

include set-theoretic operators such as P, ∪,
⋃

, |x| =
cardinality of x, TC(x) = transitive closure of x, Vn,
and ordinal arithmetic operations +, ·, xy.

I∆0S(∪) means: I∆0S plus "∪ is total".
Or equivalently: I∆0S in language expanded by a
function symbol ∪ and axioms:

x ∪ 0 = x and x ∪ [y; z] = (x ∪ y); z

and similarly for other primitive recursive functions.



Sets as digraphs
(Aczel)

Each HF set x is uniquely specified by a finite
extensional acyclic digraph with a single source

G(x) = {〈y, z〉 | z ∈ y ≤ x}

e.g. c = {{{0}}, {0, {0}}} = the "pair of deuces"



The 28 sets whose graphs have 6 edges



The 88 sets whose graphs have 7 edges



The ordinals of a model of I∆0S
Interpreting arithmetic in set theory

I Given V |= I∆0S, we want to talk about the
ordinal arithmetic of V .

Von Neumann ordinals (1923) (Zermelo,
Mirimanoff): n + 1 = n; n = n ∪ {n}

Zermelo ordinals (1908): (n + 1)z = 0; nz = {nz}

We shall see that they can differ in a model of I∆0S.



Zermelo ordinals are simpler
in setbuilder notation

Zermelo: 6z = {{{{{{}}}}}}

Von Neumann:

6 ={{}, {{}}, {{}, {{}}}}, {{}, {{}}, {{}, {{}}}},
{{}, {{}}, {{}, {{}}}}, {{}, {{}}, {{}, {{}}}}},
{{}, {{}}, {{}, {{}}}}, {{}, {{}}, {{}, {{}}}},
{{}, {{}}, {{}, {{}}}}, {{}, {{}}, {{}, {{}}}}}



Zermelo ordinals are simpler
as digraphs

This time, only polynomially so.



cc

in the Zermelo arithmetic where c is the "pair of deuces"



PS : PA = I∆0S : I∆0 ?

Proposition. Suppose V |= I∆0S and W is a
transitive subset of V closed under adjunction. Then
∆0 formulæ are absolute between V and W, and
W |= I∆0S.

I Q1: Which axioms of set theory are provable in
I∆0S?

I Q2: Given M |= I∆0, is there a model of I∆0S
whose ordinal arithmetic is isomorphic to M?



Which axioms of ZF are provable in
I∆0S?

I I∆0S ` the Pair Set Axiom, Extensionality,
¬Inf, and the Axiom of Foundation.

I I∆0S(TC,P) `
⋃

, i.e. the Union Axiom. This
is because

⋃
x ∈ P(TC(x)).

I I∆0S(P) ` ∆0-Comprehension.
I Does I∆0S ` ∆0-Comprehension? . . . If so, and

if the answer to Q2 is positive, then
I∆0 ` ∆0PHP. This is because I∆0S proves a
pigeon hole principle for functions which are
sets.



Submodels of AckM
for M |= IΣ1

I For I ⊆e M : VI =
⋃

i∈I Vi.
I VI |= I∆0S(

⋃
,TC,P).

I Hi is the set of all elements of VM = AckM
whose transitive closure has cardinality < i, i.e.
all sets of hereditary cardinality < i, i.e all sets
whose digraph representations have ≤ i nodes.

I If I is closed under +, then HI |= I∆0S(
⋃
,TC).

I HI |= P iff I is closed under exponentiation.



Submodels of AckM
for M |= IΣ1

I Ci = {x ∈ VM | VM |= ∀y ≤ x |y| < i}.
I Let e0 = 1, en+1 = 2en.
I Theorem:

(1) VI ∩ CJ |= I∆0S.
(2) VI ∩ CJ |= ∪ iff J ≥ eI or J is closed under
addition.
(3) VI ∩ CJ |=

⋃
iff J ≥ eI or J is closed under

multiplication.

(5) VI ∩ CJ |= P iff J ≥ eI or J is closed under
exponentiation.



Submodels of AckM
and independence results

I (4)(i) Suppose I is closed under addition. Then
VI ∩ CJ |= TC iff J ≥ eI or JI = J.

(4)(ii) VI ∩ CJ |= TC iff J ≥ eI or
∃i ∈ I(JI−i = J ∧ ei ∈ J).

I This theorem provides examples to show that
e.g. I∆0S 6` ∪ and I∆0S(

⋃
,P) 6` TC.

I Does I∆0S(TC) `
⋃

?

I In VI ∩ CJ with J < I, the von Neumann
ordinals are J but the Zermelo ordinals are I.



Ordinals in the Ackermann interpretation
Q2: Given M |= I∆0, is there a model of I∆0S whose ordinal arithmetic is isomorphic
to M?

The Ackermann code for nz is en−1. The Ackermann
code for the von Neumann ordinal n is even bigger.
This iterated-exponential growth means that:
I The Ackermann interpretation gives:

Theorem: I∆0 + Exp interprets I∆0S.
I But the Ackermann interpretation fails to

preserve ordinals if M is not a model of "n 7→ en
is total".



Generating set digraphs



Generating set digraphs



Models of I∆0 + Exp are expandable
Q2: Given M |= I∆0, is there a model of I∆0S whose ordinal arithmetic is isomorphic
to M?

Yes if M has an end extension to a model of IΣ1.

Theorem: Yes if M |= Exp.
Idea: Code sets by their digraph representations, e.g.

c = {{{0}}, {0, {0}}} = the "pair of deuces" is
represented by s∗ = 〈{0}, {1}, {0, 1}, {2, 3}〉 which
is represented in turn by s = 〈1, 2, 3, 12〉.



Models of I∆0 + Exp are expandable
Definition: A σ-sequence in M is a strictly increasing
sequence s = 〈s1, . . . , sn〉 such that for each i,
0 < si < 2i.

If s is a σ-sequence, define s∗i = {j < i | j ∈Ack si}
and s∗ to be the corresponding sequence 〈s∗1, . . . , s∗n〉.
(Peddicord)

Then s∗i ⊆ {0, . . . , i− 1} and the s∗i are distinct and
non-empty.

The idea is to use the sequence s to represent the set
whose digraph has nodes 0, . . . , n with an edge from
j to i just when i ∈ s∗j .



Generating set digraphs
The digraph interpretation

is represented by s∗ = 〈{0}, {1}, {0, 1}, {2, 3}〉 ,
s = 〈1, 2, 3, 12〉.
But also by t∗ = 〈{0}, {0, 1}, {1}, {2, 3}〉,
t = 〈1, 3, 2, 12〉 . . . but this is not increasing!



Generating set digraphs
The digraph interpretation

We also need a condition on a σ-sequence to ensure
the corresponding digraph only has one source:

Definition: s = 〈s1, . . . , sn〉 is lean iff
∀i < n ∃j ≤ n i ∈Ack sj.

Fact: Every HF set is represented by a unique lean
σ-sequence.



Models of I∆0 + Exp are expandable
The digraph interpretation

Given M |= I∆0 + Exp let DM = the set of lean
σ-sequences in M. Adjunction in DM is defined as a
binary operation on σ-sequences that mimics the
surgery on digraphs needed to form an adjunction of
the corresponding sets. The relation < is interpreted
similarly.

Theorem: Let M |= I∆0 + Exp. Then DM |= I∆0S
and the (von Neumann or Zermelo) ordinals of DM

are isomorphic to M.

Because the construction of DM in M is ∆0-defined
and uniform, this gives an interpretation of I∆0S in
I∆0 + Exp.



Interpretability: Summary
I I∆0S(+, ·) interprets I∆0 in two ways

(von Neumann and Zermelo) which are not
necessarily equivalent.

I I∆0 + Exp interprets I∆0S in two ways. But
only the digraph interpretation preserves
ordinals.

I Does I∆0 interpret I∆0S?


