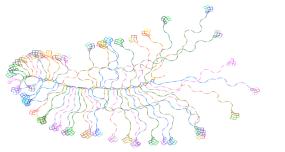
Bounded finite set theory

Laurence Kirby

MOPA GC 13 May 2020



The correspondence — does it work for bounded arithmetic?

$FST : PA = ? : I\Delta_0$

FST = Finite Set Theory $= ZF - Inf + \neg Inf (+TC)$

TC = Axiom of Transitive Containment

- ► FST and PA are mutually interpretable. Small print
- Any model of PA is isomorphic to the arithmetic of the ordinals of a model of FST.

The correspondence via Ackermann's interpretation

Let $x \in_{Ack} y$ be the predicate expressing that the coefficient of 2^x in the binary expansion of y is 1. Then

$$\blacktriangleright \langle \mathbb{N}, \in_{Ack} \rangle \cong \langle V_{\omega}, \in \rangle.$$

▶ If $M \models \mathsf{PA}$, then $Ack_M =_{df} \langle M, \in^M_{Ack} \rangle \models \mathsf{FST}$ and its ordinals are isomorphic to M.

• Corollary: PA interprets FST.

The correspondence via induction

- Adjunction: $x; y = x \cup \{y\}$
- Work in the language $\mathcal{L}(0;)$
- \in is definable: $y \in x \leftrightarrow x; y = x$
- ► PS₀ consists of:

$$0; x \neq 0$$
$$[x; y]; z = [x; z]; y$$
$$[x; y]; z = x; y \iff x; z = x \lor z = y$$

The correspondence via induction

Tarski-Givant induction:

$$\varphi(0) \land \forall x \forall y (\varphi(x) \land \varphi(y) \to \varphi(x; y)) \to \forall x \varphi(x).$$

PS consists of PS_0 together with induction for each first order φ (with parameters). (Previale)

- PS is logically equivalent to
 ZF Inf + ¬Inf + TC
- We're "arithmetizing" set theory in the sense of basing it on an induction principle over a successor operator.

 $I\Sigma_1 S$ is enough to Ackermannize

$I\Sigma_1 S$ has induction for Σ_1 formulæ in the Lévy hierarchy.

$$\mathsf{PS}:\mathsf{PA} = I\Sigma_1S:I\Sigma_1$$

- If $M \models I\Sigma_1$, then $Ack_M \models I\Sigma_1S$ and the ordinals of Ack_M , together with the restrictions of addition and multiplication to them, are isomorphic to M.
- ► Parsons' Theorem transfers to set theory: the primitive recursive set functions are those provably total in *I*∑₁S, where...

The primitive recursive set functions

are obtained from the initial functions

- the constant function $\tilde{0}(\vec{x}) = 0$,
- projections, and
- ▶ adjunction *x*; *y*,
- by closing under
 - substitutions $f(\vec{x}) = g(h_1(\vec{x}), \cdots, h_k(\vec{x}))$

▶ and *recursion* of form

$$\begin{split} f(0,\vec{z}) &= g(\vec{z}) \\ f([a;p],\vec{z}) &= h(a,p,f(a,\vec{z}),f(p,\vec{z}),\vec{z}) \end{split}$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

 $\mathcal{L}(0;<)$

"Bounded with respect to what?" — a transitive relation is needed

... so we add < to our language, intended to mean the transitive closure of the \in relation. Let $\mathsf{PS}_0^<$ be the result of adding to PS_0 :

 $x \not< 0$ and $x < y; z \leftrightarrow x < y \lor x \le z$

Then we define the class of Δ_0 formulæ in the expanded language by allowing bounded quantification of form $\forall y < t$, $\exists y < t$ where *t* is a term. And we define $I\Delta_0 S$ to be $PS_0^<$ together with induction for Δ_0 formulæ in the expanded language.

• In $I\Sigma_1 S$ this doesn't matter because we have the transitive closure so < is definable in $\mathcal{L}(0;)$.

The primitive recursive set functions

include set-theoretic operators such as $P, \cup, \bigcup, |x| =$ cardinality of x, TC(x) = transitive closure of x, V_n , and ordinal arithmetic operations $+, \cdot, x^y$.

 $I\Delta_0 S(\cup)$ means: $I\Delta_0 S$ plus " \cup is total". Or equivalently: $I\Delta_0 S$ in language expanded by a function symbol \cup and axioms:

$$x \cup 0 = x$$
 and $x \cup [y; z] = (x \cup y); z$

and similarly for other primitive recursive functions.

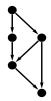
Sets as digraphs

(Aczel)

Each HF set *x* is uniquely specified by a finite extensional acyclic digraph with a single source

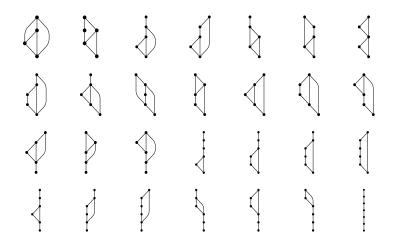
$$G(x) = \{ \langle y, z \rangle \mid z \in y \le x \}$$

e.g. $c = \{\{\{0\}\}, \{0, \{0\}\}\}\} =$ the "pair of deuces"



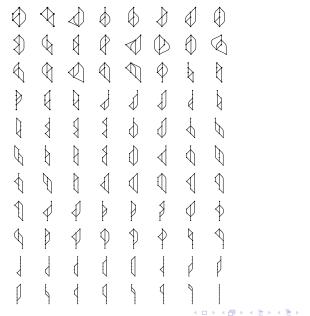
◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ● ののの

The 28 sets whose graphs have 6 edges



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

The 88 sets whose graphs have 7 edges



(産) 差 ⊙ � @

The ordinals of a model of $I \Delta_0 S$

Interpreting arithmetic in set theory

- Given $V \models I\Delta_0 S$, we want to talk about the ordinal arithmetic of *V*.
- Von Neumann ordinals (1923) (Zermelo, Mirimanoff): $n + 1 = n; n = n \cup \{n\}$
- Zermelo ordinals (1908): $(n + 1)_z = 0; n_z = \{n_z\}$

We shall see that they can differ in a model of $I\Delta_0 S$.

Zermelo ordinals are simpler

in setbuilder notation

Zermelo: $6_z = \{\{\{\{\{\}\}\}\}\}\}$

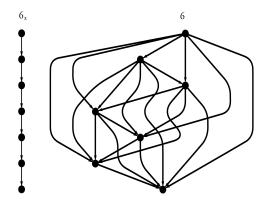
Von Neumann:

$$\begin{split} 6 = & \{ \{\}, \{\{\}\}, \{\{\}\}\}\}, \{\{\}, \{\{\}\}\}, \{\{\}\}\}\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}\}\}\}\}, \{\{\}, \{\{\}\}\}\}\}, \{\{\}, \{\{\}\}\}\}\}, \{\{\}, \{\{\}\}\}\}\}, \{\{\}, \{\{\}\}\}\}\}, \{\{\}, \{\{\}\}\}\}\}, \{\{\}, \{\{\}\}\}\}\}, \{\{\}, \{\{\}\}\}\}\}, \{\{\}, \{\{\}\}\}\}\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}\}\}\}\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}\}\}\}\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}\}\}\}\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}\}\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}, \{\{\}, \{\}\}\}\}, \{\{\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}, \{\{\}\}\}\}, \{\{\}, \{\{\}, \{\{\}, \{\{\}, \{\{\}\}\}\}\}, \{\{\}, \{\{\}, \{\{\}, \{\{\}, \{\{\}, \{\{\}\}\}\}\}, \{\{\}, \{\{\}, \{\{\}, \{\{\}, \{\{\}, \{\{\}, \{\{\}\}\}\}\}\}, \{\{\}, \{\{\}, \{\{\}, \{\{\}, \{\{\}\}\}\}\}, \{\{\}, \{\{\}, \{\{\}, \{\{\}, \{\{\}, \{\{\}, \{\{\}, \{\{\}, \{\{\}, \{\}\}\}\}\}\}, \{\{\}, \{\{\}, \{\{\}, \{\{\}, \{\{\}, \{\{\}, \{\}\}\}\}\}\}, \{\{$$

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ● ののの

Zermelo ordinals are simpler

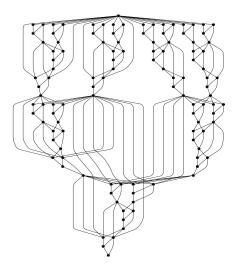
as digraphs



This time, only polynomially so.

 C^{c}

in the Zermelo arithmetic where c is the "pair of deuces"



$\mathsf{PS}:\mathsf{PA} = I\Delta_0 S: I\Delta_0 ?$

Proposition. Suppose $V \models I\Delta_0 S$ and W is a transitive subset of V closed under adjunction. Then Δ_0 formulæ are absolute between V and W, and $W \models I\Delta_0 S$.

- ► Q1: Which axioms of set theory are provable in *I*∆₀*S*?
- Q2: Given $M \models I\Delta_0$, is there a model of $I\Delta_0 S$ whose ordinal arithmetic is isomorphic to M?

Which axioms of ZF are provable in $I\Delta_0 S$?

- ► $I\Delta_0 S \vdash$ the Pair Set Axiom, Extensionality, ¬lnf, and the Axiom of Foundation.
- ► $I\Delta_0 S(\mathsf{TC}, \mathsf{P}) \vdash \bigcup$, i.e. the Union Axiom. This is because $\bigcup x \in \mathsf{P}(\mathsf{TC}(x))$.
- ► $I\Delta_0 S(\mathsf{P}) \vdash \Delta_0$ -Comprehension.
- Does I∆₀S ⊢ ∆₀-Comprehension? ... If so, and if the answer to Q2 is positive, then I∆₀ ⊢ ∆₀PHP. This is because I∆₀S proves a pigeon hole principle for functions which are sets.

Submodels of Ack_M for $M \models I\Sigma_1$

For
$$I \subseteq_e M$$
: $V_I = \bigcup_{i \in I} V_i$.
 $V_I \models I \Delta_0 S(\bigcup, \mathsf{TC}, \mathsf{P})$.

- ► H_i is the set of all elements of $V_M = Ack_M$ whose transitive closure has cardinality < i, i.e. all sets of hereditary cardinality < i, i.e all sets whose digraph representations have $\le i$ nodes.
- ▶ If *I* is closed under +, then $H_I \models I\Delta_0 S(\bigcup, \mathsf{TC})$.
- $H_I \models \mathsf{P}$ iff *I* is closed under exponentiation.

Submodels of Ack_M

for $M \models I\Sigma_1$

- $\triangleright \quad C_i = \{ x \in V_M \mid V_M \models \forall y \le x \mid y \mid < i \}.$
- Let $e_0 = 1$, $e_{n+1} = 2^{e_n}$.
- Theorem:
 (1) V_I ∩ C_J ⊨ I∆₀S.
 (2) V_I ∩ C_J ⊨ ∪ iff J ≥ e_I or J is closed under addition.

(3) $V_I \cap C_J \models \bigcup \text{ iff } J \ge e_I \text{ or } J \text{ is closed under multiplication.}$

(5) $V_I \cap C_J \models \mathsf{P}$ iff $J \ge e_I$ or J is closed under exponentiation.

Submodels of Ack_M

and independence results

▶ (4)(i) Suppose *I* is closed under addition. Then $V_I \cap C_J \models \mathsf{TC}$ iff $J \ge e_I$ or $J^I = J$.

(4)(ii)
$$V_I \cap C_J \models \mathsf{TC} \text{ iff } J \ge e_I \text{ or}$$

 $\exists i \in I(J^{I-i} = J \land e_i \in J).$

- ► This theorem provides examples to show that e.g. $I\Delta_0S \not\vdash \cup$ and $I\Delta_0S(\bigcup, \mathsf{P}) \not\vdash \mathsf{TC}$.
- ► Does $I\Delta_0 S(\mathsf{TC}) \vdash \bigcup$?
- In $V_I \cap C_J$ with J < I, the von Neumann ordinals are *J* but the Zermelo ordinals are *I*.

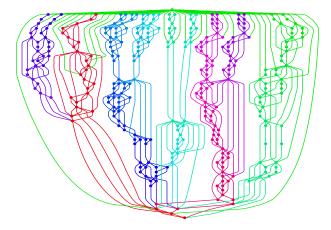
Ordinals in the Ackermann interpretation

Q2: Given $M \models I\Delta_0$, is there a model of $I\Delta_0 S$ whose ordinal arithmetic is isomorphic to *M*?

The Ackermann code for n_z is e_{n-1} . The Ackermann code for the von Neumann ordinal *n* is even bigger. This iterated-exponential growth means that:

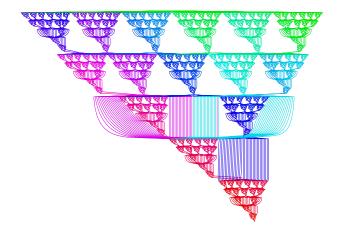
- The Ackermann interpretation gives: *Theorem:* $I\Delta_0 + \text{Exp}$ interprets $I\Delta_0S$.
- But the Ackermann interpretation fails to preserve ordinals if *M* is not a model of " $n \mapsto e_n$ is total".

Generating set digraphs



▲ロト▲舂▶▲恵▶▲恵▶ 恵 めぬぐ

Generating set digraphs



Models of $I\Delta_0 + \mathsf{Exp}$ are expandable

Q2: Given $M \models I\Delta_0$, is there a model of $I\Delta_0 S$ whose ordinal arithmetic is isomorphic to M?

Yes if *M* has an end extension to a model of $I\Sigma_1$.

Theorem: Yes if $M \models \mathsf{Exp.}$

Idea: Code sets by their digraph representations, e.g.

 $c = \{\{\{0\}\}, \{0, \{0\}\}\} =$ the "pair of deuces" is represented by $s^* = \langle \{0\}, \{1\}, \{0, 1\}, \{2, 3\} \rangle$ which is represented in turn by $s = \langle 1, 2, 3, 12 \rangle$.

Models of $I\Delta_0 + \mathsf{Exp}$ are expandable

Definition: A σ -sequence in M is a strictly increasing sequence $s = \langle s_1, \ldots, s_n \rangle$ such that for each i, $0 < s_i < 2^i$.

If *s* is a σ -sequence, define $s_i^* = \{j < i \mid j \in_{Ack} s_i\}$ and s^* to be the corresponding sequence $\langle s_1^*, \ldots, s_n^* \rangle$. (Peddicord)

Then $s_i^* \subseteq \{0, ..., i-1\}$ and the s_i^* are distinct and non-empty.

The idea is to use the sequence *s* to represent the set whose digraph has nodes 0, ..., n with an edge from *j* to *i* just when $i \in s_j^*$.

Generating set digraphs

The digraph interpretation

is represented by $s^* = \langle \{0\}, \{1\}, \{0, 1\}, \{2, 3\} \rangle$, $s = \langle 1, 2, 3, 12 \rangle$. But also by $t^* = \langle \{0\}, \{0, 1\}, \{1\}, \{2, 3\} \rangle$, $t = \langle 1, 3, 2, 12 \rangle$... but this is not increasing!

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ● ののの

Generating set digraphs

The digraph interpretation

We also need a condition on a σ -sequence to ensure the corresponding digraph only has one source:

Definition:
$$s = \langle s_1, \ldots, s_n \rangle$$
 is *lean* iff $\forall i < n \ \exists j \leq n \ i \in_{Ack} s_j$.

Fact: Every HF set is represented by a *unique* lean σ -sequence.

Models of $I\Delta_0 + \mathsf{Exp}$ are expandable

The digraph interpretation

Given $M \models I\Delta_0 + \mathsf{Exp}$ let D^M = the set of lean σ -sequences in M. Adjunction in D^M is defined as a binary operation on σ -sequences that mimics the surgery on digraphs needed to form an adjunction of the corresponding sets. The relation < is interpreted similarly.

Theorem: Let $M \models I\Delta_0 + \text{Exp.}$ Then $D^M \models I\Delta_0 S$ and the (von Neumann or Zermelo) ordinals of D^M are isomorphic to M.

Because the construction of D^M in M is Δ_0 -defined and uniform, this gives an interpretation of $I\Delta_0 S$ in $I\Delta_0 + \mathsf{Exp}$.

Interpretability: Summary

- I∆₀S(+, ·) interprets I∆₀ in two ways (von Neumann and Zermelo) which are not necessarily equivalent.
- $I\Delta_0$ + Exp interprets $I\Delta_0S$ in two ways. But only the digraph interpretation preserves ordinals.
- Does $I\Delta_0$ interpret $I\Delta_0S$?

