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Introduction



Axiomatic theories of truth

In general an axiomatic theory of truth is formed according to the
following recipe:
I Fix a theory B that supports enough of coding.

I Extend the language of B (LB) with a fresh unary predicate
T .

I Add some axioms to the effect that the resulting theory proves
T (pφq) ≡ φ, for every sentence φ in the language of B.

Most of the time we shall work with B = PA, but it can be clearly
seen where induction is not needed.
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Two main characters

Definition
TB−[B] extends B with all sentences of the form

T (pφq) ≡ φ,

for φ ∈ LB.

TB denotes TB−[PA] + Ind(LT ).

Definition
UTB−[B] extends B with all sentences of the form

∀x
(
T (pφ(ẋ)q) ≡ φ(x)

)
,

for φ(x) ∈ LB. UTB denotes UTB−[PA] + Ind(LT ).
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Properties of Tarski biconditionals

Let us now specialize to the case B = PA.

Proposition
For every modelM |= PA the following are equivalent:

1. Th(M) ∈ SSy(M)
2. ∃T ⊆M, (M,T ) |= TB.

Proposition
For every countable modelM |= PA the following are equivalent:

1. M is recursively saturated.
2. ∃T ⊆M, (M,T ) |= UTB.

Moreover the implication (2)⇒ (1) holds in arbitrary model.
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A prototypical result

Proposition (Kossak)
Suppose U ⊇ PA + IndLU is a theory in a countable language, such
that for everyM |= U,M�LPA is (short) recursively saturated.
Then for everyM |= U there exists T ∈ Def (M) such that
(M,T ) |= UTB.

Definition
Let U, V be any first-order theories in purely relational signatures.
We say that U semantically defines V if for every modelM |= U
and every R ∈ LV there exists AR ∈ Def (M) such that
(M, {AR}R∈LV ) |= V .
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What’s in logician’s cuffs?
Proposition
Suppose that (M,T ), (N ,T ′) are two models of UTB−[EA].
Then

(M,T ) ⊆ (N ,T ′) =⇒M� N .

Question (Kossak’s "off the cuff" question, MOPA 2020)
Does the above reverse?

Definition
Let U extend EA. We say that U uniformly imposes
L-elementarity if there is an n ∈ ω such that for everyM,N |= U

M�Σ∗
n N =⇒M�L � N �L.

φ ∈ Σ∗n iff φ starts with at most n alternating blocks of quantifiers
(starting with ∃) followed by an atomic formula.
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Definition
We say that U uniformly imposes L-elementarity if there is an
n ∈ ω such that for everyM,N |= U

M�Σ∗
n N =⇒M�L � N �L.

Question (Kossak’s "off the cuff" question, formal version)
Does every reasonable theory (extending EA) which uniformly
imposes arithmetical elementarity, semantically define UTB−[EA]?
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Variants of the main problem
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We say that U uniformly imposes L-elementary equivalence if
there is an n ∈ ω such that for everyM,N |= U
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is a formula φR(x̄) ∈ LU such that for every Φ-axiom of V

U ` Φ[φR(t̄)/R(t̄)]R∈LV .
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Infinite pathologies

Proposition
There is a theory U ⊇ PA in a countable language which uniformly
imposes arithmetical elementarity but does not semantically define
TB−[EA].

For every formula φ(x) U has a predicate Tφ(x) and an axiom

∀x
(
Tφ(x)(pφ(ẋ)q) ≡ φ(x)

)
.

From now on we shall restrict ourselves to r.e. theories in finite
languages extending EA. By pairing, we can safely assume that
such theories has just one additional predicate P. For simplicity,
we specialize to the case of theories extending EA and talk only
about imposing arithmetical elementarity (elementary equivalence).
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Tφ(x)(pφ(ẋ)q) ≡ φ(x)

)
.

From now on we shall restrict ourselves to r.e. theories in finite
languages extending EA. By pairing, we can safely assume that
such theories has just one additional predicate P.

For simplicity,
we specialize to the case of theories extending EA and talk only
about imposing arithmetical elementarity (elementary equivalence).



Infinite pathologies

Proposition
There is a theory U ⊇ PA in a countable language which uniformly
imposes arithmetical elementarity but does not semantically define
TB−[EA].

For every formula φ(x) U has a predicate Tφ(x) and an axiom

∀x
(
Tφ(x)(pφ(ẋ)q) ≡ φ(x)
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For starters: theories with full induction
Proposition
Suppose that U ` IndLU and U uniformly imposes elementarity
(elementary equivalence). Then U (syntactically) defines UTB
(resp. TB).

Proof: since U extends arithmetic and has induction, U has well
behaved partial truth predicates. In particular for every n, k ∈ ω

U ` Con(U�k + TrueΣn(LU )).

Fix n witnessing that U imposes elementarity. Let
τ(x) := U(x) ∧ Con(U�x + TrueΣn(LU )) Then U ` Con(τ) and
hence there is a definable modelM and a definable satisfaction
relation |= such that U ` M |= τ. We put T (x) :=M |= x . Fix
any model N |= U and observe that the following equivalences hold

N |= T (φ(a)) ⇐⇒ M |= φ(a) ⇐⇒ N |= φ(a).
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The main results
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If U uniformly imposes elementarity (elementary equivalence), then
U syntactically defines UTB− (TB−.)

Theorem
If U imposes elementarity (elementary equivalence), then U
semantically defines UTB− (TB−).

For the proofs see the blackboard.
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Some comments
Proposition
There is a theory U which semantically defines TB− but does not
syntactically define TB−. Moreover, in every model of U, TB− is
definable with a parameter-free, atomic formula.

Define U to be a theory with two predicates T0 and T1 and having
as axioms

(T0(pφq) ≡ φ) ∨ (T1(pψq) ≡ ψ).
It is enough to show that U does not uniformly impose elementary
equivalence. LetM0 |= PA be a model in which every consistent
completion of PA is coded. LetM1 |= PA be any Σn-elementary
extension ofM0 which is not elementarily equivalent. Let cMi be
the code of Th(Mi ). Define

TMj
i (x) := (cMi )Mj .

Then (M0,T0,T1) �n (M1,T0,T1) and they are both models of
U.
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Thank you for your attention.
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