Model theoretic characterizations of truth Part I (joint work with Bartosz Wcisło)

Mateusz Łełyk

Faculty of Philosophy, University of Warsaw

MOPA, November 29, 2021

◆□▶ ◆舂▶ ◆産▶ ◆産▶

12

Introduction

In general an axiomatic theory of truth is formed according to the following recipe:

► Fix a theory *B* that supports enough of coding.

In general an axiomatic theory of truth is formed according to the following recipe:

- ▶ Fix a theory *B* that supports enough of coding.
- Extend the language of $B(\mathcal{L}_B)$ with a fresh unary predicate T.

In general an axiomatic theory of truth is formed according to the following recipe:

- ▶ Fix a theory *B* that supports enough of coding.
- Extend the language of $B(\mathcal{L}_B)$ with a fresh unary predicate T.
- Add some axioms to the effect that the resulting theory proves $T(\ulcorner \phi \urcorner) \equiv \phi$, for every sentence ϕ in the language of *B*.

(1)

In general an axiomatic theory of truth is formed according to the following recipe:

- ▶ Fix a theory *B* that supports enough of coding.
- Extend the language of $B(\mathcal{L}_B)$ with a fresh unary predicate T.
- Add some axioms to the effect that the resulting theory proves $T(\ulcorner \phi \urcorner) \equiv \phi$, for every sentence ϕ in the language of *B*.

In general an axiomatic theory of truth is formed according to the following recipe:

- ▶ Fix a theory *B* that supports enough of coding.
- Extend the language of $B(\mathcal{L}_B)$ with a fresh unary predicate T.
- Add some axioms to the effect that the resulting theory proves $T(\ulcorner \phi \urcorner) \equiv \phi$, for every sentence ϕ in the language of *B*.

Most of the time we shall work with B = PA, but it can be clearly seen where induction is not needed.

Two main characters

Definition

 $TB^{-}[B]$ extends B with all sentences of the form

$$T(\ulcorner \phi \urcorner) \equiv \phi,$$

for $\phi \in \mathcal{L}_B$.

Two main characters

Definition

 $TB^{-}[B]$ extends B with all sentences of the form

$$T(\ulcorner \phi \urcorner) \equiv \phi,$$

for $\phi \in \mathcal{L}_B$.

Two main characters

Definition

 $TB^{-}[B]$ extends B with all sentences of the form

$$T(\ulcorner \phi \urcorner) \equiv \phi,$$

for $\phi \in \mathcal{L}_B$. TB denotes $\mathsf{TB}^-[\mathsf{PA}] + \mathsf{Ind}(\mathcal{L}_T)$.

Definition

 $UTB^{-}[B]$ extends B with all sentences of the form

$$\forall x \big(T \big(\ulcorner \phi(\dot{x}) \urcorner \big) \equiv \phi(x) \big),$$

for $\phi(x) \in \mathcal{L}_B$. UTB denotes $UTB^{-}[PA] + Ind(\mathcal{L}_T)$.

Let us now specialize to the case B = PA.

Proposition

For every model $\mathcal{M} \models \mathsf{PA}$ the following are equivalent:

Let us now specialize to the case B = PA.

Proposition

For every model $\mathcal{M} \models \mathsf{PA}$ the following are equivalent: 1. $\mathsf{Th}(\mathcal{M}) \in SSy(\mathcal{M})$

Let us now specialize to the case B = PA.

Proposition

For every model $\mathcal{M} \models \mathsf{PA}$ the following are equivalent:

1.
$$\mathsf{Th}(\mathcal{M}) \in SSy(\mathcal{M})$$

2.
$$\exists T \subseteq \mathcal{M}, (\mathcal{M}, T) \models \mathsf{TB}.$$

Let us now specialize to the case B = PA.

Proposition

For every model $\mathcal{M} \models \mathsf{PA}$ the following are equivalent:

- 1. Th $(\mathcal{M}) \in SSy(\mathcal{M})$
- 2. $\exists T \subseteq \mathcal{M}, (\mathcal{M}, T) \models \mathsf{TB}.$

Proposition

For every countable model $\mathcal{M} \models \mathsf{PA}$ the following are equivalent:

Let us now specialize to the case B = PA.

Proposition

For every model $\mathcal{M} \models \mathsf{PA}$ the following are equivalent:

- 1. Th $(\mathcal{M}) \in SSy(\mathcal{M})$
- 2. $\exists T \subseteq \mathcal{M}, (\mathcal{M}, T) \models \mathsf{TB}.$

Proposition

For every countable model $\mathcal{M} \models \mathsf{PA}$ the following are equivalent:

1. \mathcal{M} is recursively saturated.

Let us now specialize to the case B = PA.

Proposition

For every model $\mathcal{M} \models \mathsf{PA}$ the following are equivalent:

- 1. Th $(\mathcal{M}) \in SSy(\mathcal{M})$
- 2. $\exists T \subseteq \mathcal{M}, (\mathcal{M}, T) \models \mathsf{TB}.$

Proposition

For every countable model $\mathcal{M} \models \mathsf{PA}$ the following are equivalent:

- 1. \mathcal{M} is recursively saturated.
- 2. $\exists T \subseteq \mathcal{M}, (\mathcal{M}, T) \models \mathsf{UTB}.$

Let us now specialize to the case B = PA.

Proposition

For every model $\mathcal{M} \models \mathsf{PA}$ the following are equivalent:

- 1. Th $(\mathcal{M}) \in SSy(\mathcal{M})$
- 2. $\exists T \subseteq \mathcal{M}, (\mathcal{M}, T) \models \mathsf{TB}.$

Proposition

For every countable model $\mathcal{M} \models \mathsf{PA}$ the following are equivalent:

- 1. \mathcal{M} is recursively saturated.
- 2. $\exists T \subseteq \mathcal{M}, (\mathcal{M}, T) \models \mathsf{UTB}.$

Let us now specialize to the case B = PA.

Proposition

For every model $\mathcal{M} \models \mathsf{PA}$ the following are equivalent:

- 1. Th $(\mathcal{M}) \in SSy(\mathcal{M})$
- 2. $\exists T \subseteq \mathcal{M}, (\mathcal{M}, T) \models \mathsf{TB}.$

Proposition

For every countable model $\mathcal{M} \models \mathsf{PA}$ the following are equivalent:

- 1. \mathcal{M} is recursively saturated.
- 2. $\exists T \subseteq \mathcal{M}, (\mathcal{M}, T) \models \mathsf{UTB}.$

Moreover the implication $(2) \Rightarrow (1)$ holds in arbitrary model.

A prototypical result

Proposition (Kossak)

Suppose $U \supseteq PA + Ind_{\mathcal{L}_U}$ is a theory in a countable language, such that for every $\mathcal{M} \models U$, $\mathcal{M} \upharpoonright_{\mathcal{L}_{PA}}$ is (short) recursively saturated. Then for every $\mathcal{M} \models U$ there exists $T \in Def(\mathcal{M})$ such that $(\mathcal{M}, T) \models UTB$.

A prototypical result

Proposition (Kossak)

Suppose $U \supseteq PA + Ind_{\mathcal{L}_U}$ is a theory in a countable language, such that for every $\mathcal{M} \models U$, $\mathcal{M} \upharpoonright_{\mathcal{L}_{PA}}$ is (short) recursively saturated. Then for every $\mathcal{M} \models U$ there exists $T \in Def(\mathcal{M})$ such that $(\mathcal{M}, T) \models UTB$.

Definition

Let U, V be any first-order theories in purely relational signatures. We say that U semantically defines V if for every model $\mathcal{M} \models U$ and every $R \in \mathcal{L}_V$ there exists $A_R \in Def(\mathcal{M})$ such that $(\mathcal{M}, \{A_R\}_{R \in \mathcal{L}_V}) \models V$.

A D > A P > A B > A B >

What's in logician's cuffs?

Proposition

Suppose that (\mathcal{M}, T) , (\mathcal{N}, T') are two models of UTB⁻[EA]. Then

$$(\mathcal{M}, T) \subseteq (\mathcal{N}, T') \Longrightarrow \mathcal{M} \preceq \mathcal{N}.$$

 $\phi \in \Sigma_n^*$ iff ϕ starts with at most *n* alternating blocks of quantifiers (starting with \exists) followed by an *atomic* formula.

What's in logician's cuffs?

Proposition

Suppose that (\mathcal{M}, T) , (\mathcal{N}, T') are two models of UTB⁻[EA]. Then

$$(\mathcal{M}, T) \subseteq (\mathcal{N}, T') \Longrightarrow \mathcal{M} \preceq \mathcal{N}.$$

Question (Kossak's "off the cuff" question, MOPA 2020)

Does the above reverse?

 $\phi \in \Sigma_n^*$ iff ϕ starts with at most *n* alternating blocks of quantifiers (starting with \exists) followed by an *atomic* formula.

What's in logician's cuffs?

Proposition

Suppose that (\mathcal{M}, T) , (\mathcal{N}, T') are two models of UTB⁻[EA]. Then

$$(\mathcal{M}, T) \subseteq (\mathcal{N}, T') \Longrightarrow \mathcal{M} \preceq \mathcal{N}.$$

Question (Kossak's "off the cuff" question, MOPA 2020)

Does the above reverse?

Definition

Let U extend EA. We say that U uniformly imposes \mathcal{L} -elementarity if there is an $n \in \omega$ such that for every $\mathcal{M}, \mathcal{N} \models U$

$$\mathcal{M} \preceq_{\Sigma_n^*} \mathcal{N} \Longrightarrow \mathcal{M} \upharpoonright_{\mathcal{L}} \preceq \mathcal{N} \upharpoonright_{\mathcal{L}}.$$

 $\phi \in \Sigma_n^*$ iff ϕ starts with at most *n* alternating blocks of quantifiers (starting with \exists) followed by an *atomic* formula.

What's in logician's cuffs? - continued

Definition

We say that U uniformly imposes \mathcal{L} -elementarity if there is an $n \in \omega$ such that for every $\mathcal{M}, \mathcal{N} \models U$

$$\mathcal{M} \preceq_{\Sigma_n^*} \mathcal{N} \Longrightarrow \mathcal{M} \upharpoonright_{\mathcal{L}} \preceq \mathcal{N} \upharpoonright_{\mathcal{L}}.$$

What's in logician's cuffs? - continued

Definition

We say that U uniformly imposes \mathcal{L} -elementarity if there is an $n \in \omega$ such that for every $\mathcal{M}, \mathcal{N} \models U$

$$\mathcal{M} \preceq_{\Sigma_n^*} \mathcal{N} \Longrightarrow \mathcal{M} \upharpoonright_{\mathcal{L}} \preceq \mathcal{N} \upharpoonright_{\mathcal{L}}.$$

Question (Kossak's "off the cuff" question, formal version)

Does every reasonable theory (extending EA) which uniformly imposes arithmetical elementarity, semantically define UTB⁻[EA]?

Variants of the main problem

Definition

We say that U uniformly imposes \mathcal{L} -elementary equivalence if there is an $n \in \omega$ such that for every $\mathcal{M}, \mathcal{N} \models U$

$$\mathcal{M} \preceq_n \mathcal{N} \Longrightarrow \mathsf{Th}(\mathcal{M}{\upharpoonright}_{\mathcal{L}}) = \mathsf{Th}(\mathcal{N}{\upharpoonright}_{\mathcal{L}}).$$

We say that U imposes \mathcal{L} -elementarity (elementary equivalence) if for every \mathcal{M} there is an $n \in \omega$ such that for every $\mathcal{N} \models U$

$$\mathcal{M} \preceq_n \mathcal{N} \Longrightarrow \mathcal{M} \upharpoonright_{\mathcal{L}} \preceq \mathcal{N} \upharpoonright_{\mathcal{L}}.$$
$$(\mathcal{M} \preceq_n \mathcal{N} \Longrightarrow \mathsf{Th}(\mathcal{M} \upharpoonright_{\mathcal{L}}) = \mathsf{Th}(\mathcal{N} \upharpoonright_{\mathcal{L}}))$$

Variants of the main problem

Definition

We say that U uniformly imposes \mathcal{L} -elementary equivalence if there is an $n \in \omega$ such that for every $\mathcal{M}, \mathcal{N} \models U$

$$\mathcal{M} \preceq_n \mathcal{N} \Longrightarrow \mathsf{Th}(\mathcal{M}{\upharpoonright}_{\mathcal{L}}) = \mathsf{Th}(\mathcal{N}{\upharpoonright}_{\mathcal{L}}).$$

We say that U imposes \mathcal{L} -elementarity (elementary equivalence) if for every \mathcal{M} there is an $n \in \omega$ such that for every $\mathcal{N} \models U$

$$\mathcal{M} \preceq_n \mathcal{N} \Longrightarrow \mathcal{M} \upharpoonright_{\mathcal{L}} \preceq \mathcal{N} \upharpoonright_{\mathcal{L}}.$$
$$(\mathcal{M} \preceq_n \mathcal{N} \Longrightarrow \mathsf{Th}(\mathcal{M} \upharpoonright_{\mathcal{L}}) = \mathsf{Th}(\mathcal{N} \upharpoonright_{\mathcal{L}}))$$

Definition

We say that U (syntactically) defines V if for every $R \in \mathcal{L}_V$ there is a formula $\phi_R(\bar{x}) \in \mathcal{L}_U$ such that for every Φ -axiom of V

 $U \vdash \Phi[\phi_R(\overline{t})/R(\overline{t})]_{R \in \mathcal{L}_V}.$

Proposition

There is a theory $U \supseteq PA$ in a countable language which uniformly imposes arithmetical elementarity but does not semantically define $TB^{-}[EA]$.

Proposition

There is a theory $U \supseteq PA$ in a countable language which uniformly imposes arithmetical elementarity but does not semantically define $TB^{-}[EA]$.

Proposition

There is a theory $U \supseteq PA$ in a countable language which uniformly imposes arithmetical elementarity but does not semantically define $TB^{-}[EA]$.

For every formula $\phi(x)$ U has a predicate $\mathcal{T}_{\phi(x)}$ and an axiom

$$\forall x (T_{\phi(x)}(\ulcorner \phi(\dot{x}) \urcorner) \equiv \phi(x)).$$

Proposition

There is a theory $U \supseteq PA$ in a countable language which uniformly imposes arithmetical elementarity but does not semantically define $TB^{-}[EA]$.

For every formula $\phi(x)$ U has a predicate $T_{\phi(x)}$ and an axiom

$$\forall x (T_{\phi(x)}(\ulcorner \phi(\dot{x})\urcorner) \equiv \phi(x)).$$

From now on we shall restrict ourselves to r.e. theories in finite languages extending EA.

Proposition

There is a theory $U \supseteq PA$ in a countable language which uniformly imposes arithmetical elementarity but does not semantically define $TB^{-}[EA]$.

For every formula $\phi(x)$ U has a predicate $T_{\phi(x)}$ and an axiom

$$\forall x (T_{\phi(x)}(\ulcorner \phi(\dot{x}) \urcorner) \equiv \phi(x)).$$

From now on we shall restrict ourselves to r.e. theories in finite languages extending EA. By pairing, we can safely assume that such theories has just one additional predicate P.

Proposition

There is a theory $U \supseteq PA$ in a countable language which uniformly imposes arithmetical elementarity but does not semantically define $TB^{-}[EA]$.

For every formula $\phi(x)$ U has a predicate $T_{\phi(x)}$ and an axiom

$$\forall x (T_{\phi(x)}(\ulcorner \phi(\dot{x}) \urcorner) \equiv \phi(x)).$$

From now on we shall restrict ourselves to r.e. theories in finite languages extending EA. By pairing, we can safely assume that such theories has just one additional predicate *P*. For simplicity, we specialize to the case of theories extending EA and talk only about imposing arithmetical elementarity (elementary equivalence).

Proposition

Suppose that $U \vdash \operatorname{Ind}_{\mathcal{L}_U}$ and U uniformly imposes elementarity (elementary equivalence). Then U (syntactically) defines UTB (resp. TB).

Proposition

Suppose that $U \vdash \operatorname{Ind}_{\mathcal{L}_U}$ and U uniformly imposes elementarity (elementary equivalence). Then U (syntactically) defines UTB (resp. TB).

Proposition

Suppose that $U \vdash \operatorname{Ind}_{\mathcal{L}_U}$ and U uniformly imposes elementarity (elementary equivalence). Then U (syntactically) defines UTB (resp. TB).

Proof: since U extends arithmetic and has induction, U has well behaved partial truth predicates.

Proposition

Suppose that $U \vdash \operatorname{Ind}_{\mathcal{L}_U}$ and U uniformly imposes elementarity (elementary equivalence). Then U (syntactically) defines UTB (resp. TB).

Proof: since U extends arithmetic and has induction, U has well behaved partial truth predicates. In particular for every $n, k \in \omega$

$$U \vdash \operatorname{Con}(U \upharpoonright_k + \operatorname{True}_{\Sigma_n(\mathcal{L}_U)}).$$

(日)

Fix n witnessing that U imposes elementarity.

Proposition

Suppose that $U \vdash \operatorname{Ind}_{\mathcal{L}_U}$ and U uniformly imposes elementarity (elementary equivalence). Then U (syntactically) defines UTB (resp. TB).

Proof: since U extends arithmetic and has induction, U has well behaved partial truth predicates. In particular for every $n, k \in \omega$

$$U \vdash \operatorname{Con}(U \upharpoonright_k + \operatorname{True}_{\Sigma_n(\mathcal{L}_U)}).$$

(日)

Fix *n* witnessing that *U* imposes elementarity. Let $\tau(x) := U(x) \wedge Con(U \upharpoonright_x + True_{\Sigma_n(\mathcal{L}_U)})$

Proposition

Suppose that $U \vdash \operatorname{Ind}_{\mathcal{L}_U}$ and U uniformly imposes elementarity (elementary equivalence). Then U (syntactically) defines UTB (resp. TB).

Proof: since U extends arithmetic and has induction, U has well behaved partial truth predicates. In particular for every $n, k \in \omega$

$$U \vdash \mathsf{Con}(U \restriction_k + \mathsf{True}_{\Sigma_n(\mathcal{L}_U)}).$$

Fix *n* witnessing that *U* imposes elementarity. Let $\tau(x) := U(x) \wedge \operatorname{Con}(U \upharpoonright_x + \operatorname{True}_{\Sigma_n(\mathcal{L}_U)})$ Then $U \vdash \operatorname{Con}(\tau)$ and hence there is a definable model \mathcal{M} and a definable satisfaction relation \models such that $U \vdash \mathcal{M} \models \tau$. We put $T(x) := \mathcal{M} \models x$.

Proposition

Suppose that $U \vdash \operatorname{Ind}_{\mathcal{L}_U}$ and U uniformly imposes elementarity (elementary equivalence). Then U (syntactically) defines UTB (resp. TB).

Proof: since U extends arithmetic and has induction, U has well behaved partial truth predicates. In particular for every $n, k \in \omega$

$$U \vdash \operatorname{Con}(U \restriction_k + \operatorname{True}_{\Sigma_n(\mathcal{L}_U)}).$$

Fix *n* witnessing that *U* imposes elementarity. Let $\tau(x) := U(x) \wedge \operatorname{Con}(U \upharpoonright_x + \operatorname{True}_{\Sigma_n(\mathcal{L}_U)})$ Then $U \vdash \operatorname{Con}(\tau)$ and hence there is a definable model \mathcal{M} and a definable satisfaction relation \models such that $U \vdash \mathcal{M} \models \tau$. We put $T(x) := \mathcal{M} \models x$. Fix any model $\mathcal{N} \models U$ and observe that the following equivalences hold

$$\mathcal{N} \models T(\phi(a)) \iff \mathcal{M} \models \phi(a) \iff \mathcal{N} \models \phi(a).$$

・ ロ ト ・ 雪 ト ・ ヨ ト

Theorem

If U uniformly imposes elementarity (elementary equivalence), then U syntactically defines UTB^- (TB^- .)

Theorem

If U uniformly imposes elementarity (elementary equivalence), then U syntactically defines UTB^- (TB^- .)

Theorem

If U imposes elementarity (elementary equivalence), then U semantically defines UTB^- (TB^-).

Theorem

If U uniformly imposes elementarity (elementary equivalence), then U syntactically defines UTB^- (TB^- .)

Theorem

If U imposes elementarity (elementary equivalence), then U semantically defines UTB^- (TB^-).

Theorem

If U uniformly imposes elementarity (elementary equivalence), then U syntactically defines UTB^- (TB^- .)

(日)

Theorem

If U imposes elementarity (elementary equivalence), then U semantically defines UTB^- (TB^-).

For the proofs see the blackboard.

Proposition

There is a theory U which semantically defines TB^- but does not syntactically define TB^- . Moreover, in every model of U, TB^- is definable with a parameter-free, atomic formula.

Proposition

There is a theory U which semantically defines TB^- but does not syntactically define TB^- . Moreover, in every model of U, TB^- is definable with a parameter-free, atomic formula.

Proposition

There is a theory U which semantically defines TB^- but does not syntactically define TB^- . Moreover, in every model of U, TB^- is definable with a parameter-free, atomic formula.

Define U to be a theory with two predicates \mathcal{T}_0 and \mathcal{T}_1 and having as axioms

$$(T_0(\ulcorner \phi \urcorner) \equiv \phi) \lor (T_1(\ulcorner \psi \urcorner) \equiv \psi).$$

N^{MERS}IN
S^M
Magoyins¹⁰
►
$$\sqrt{2}$$
 ► $\sqrt{2}$ $\sqrt{2}$

• □ ▶ < 同 ▶ < 三</p>

Proposition

There is a theory U which semantically defines TB^- but does not syntactically define TB^- . Moreover, in every model of U, TB^- is definable with a parameter-free, atomic formula.

Define U to be a theory with two predicates \mathcal{T}_0 and \mathcal{T}_1 and having as axioms

$$(T_0(\ulcorner \phi \urcorner) \equiv \phi) \lor (T_1(\ulcorner \psi \urcorner) \equiv \psi).$$

It is enough to show that U does not uniformly impose elementary equivalence.

Proposition

There is a theory U which semantically defines TB^- but does not syntactically define TB^- . Moreover, in every model of U, TB^- is definable with a parameter-free, atomic formula.

Define U to be a theory with two predicates \mathcal{T}_0 and \mathcal{T}_1 and having as axioms

$$(T_0(\ulcorner \phi \urcorner) \equiv \phi) \lor (T_1(\ulcorner \psi \urcorner) \equiv \psi).$$

It is enough to show that U does not uniformly impose elementary equivalence. Let $\mathcal{M}_0 \models \mathsf{PA}$ be a model in which every consistent completion of PA is coded.

Proposition

There is a theory U which semantically defines TB^- but does not syntactically define TB^- . Moreover, in every model of U, TB^- is definable with a parameter-free, atomic formula.

Define U to be a theory with two predicates \mathcal{T}_0 and \mathcal{T}_1 and having as axioms

$$(T_0(\ulcorner \phi \urcorner) \equiv \phi) \lor (T_1(\ulcorner \psi \urcorner) \equiv \psi).$$

It is enough to show that U does not uniformly impose elementary equivalence. Let $\mathcal{M}_0 \models \mathsf{PA}$ be a model in which every consistent completion of PA is coded. Let $\mathcal{M}_1 \models \mathsf{PA}$ be any Σ_n -elementary extension of \mathcal{M}_0 which is not elementarily equivalent.

◆日 > < 同 > < 国 > < 国 >

Proposition

There is a theory U which semantically defines TB^- but does not syntactically define TB^- . Moreover, in every model of U, TB^- is definable with a parameter-free, atomic formula.

Define U to be a theory with two predicates \mathcal{T}_0 and \mathcal{T}_1 and having as axioms

$$(T_0(\ulcorner \phi \urcorner) \equiv \phi) \lor (T_1(\ulcorner \psi \urcorner) \equiv \psi).$$

It is enough to show that U does not uniformly impose elementary equivalence. Let $\mathcal{M}_0 \models \mathsf{PA}$ be a model in which every consistent completion of PA is coded. Let $\mathcal{M}_1 \models \mathsf{PA}$ be any Σ_n -elementary extension of \mathcal{M}_0 which is not elementarily equivalent. Let $c_{\mathcal{M}_i}$ be the code of $\mathsf{Th}(\mathcal{M}_i)$.

Proposition

There is a theory U which semantically defines TB^- but does not syntactically define TB^- . Moreover, in every model of U, TB^- is definable with a parameter-free, atomic formula.

Define U to be a theory with two predicates \mathcal{T}_0 and \mathcal{T}_1 and having as axioms

$$(T_0(\ulcorner \phi \urcorner) \equiv \phi) \lor (T_1(\ulcorner \psi \urcorner) \equiv \psi).$$

It is enough to show that U does not uniformly impose elementary equivalence. Let $\mathcal{M}_0 \models \mathsf{PA}$ be a model in which every consistent completion of PA is coded. Let $\mathcal{M}_1 \models \mathsf{PA}$ be any Σ_n -elementary extension of \mathcal{M}_0 which is not elementarily equivalent. Let $c_{\mathcal{M}_i}$ be the code of $\mathsf{Th}(\mathcal{M}_i)$. Define

$$T_i^{\mathcal{M}_j}(x) := (c_{\mathcal{M}_i})^{\mathcal{M}_j}.$$

Proposition

There is a theory U which semantically defines TB^- but does not syntactically define TB^- . Moreover, in every model of U, TB^- is definable with a parameter-free, atomic formula.

Define U to be a theory with two predicates \mathcal{T}_0 and \mathcal{T}_1 and having as axioms

$$(T_0(\ulcorner \phi \urcorner) \equiv \phi) \lor (T_1(\ulcorner \psi \urcorner) \equiv \psi).$$

It is enough to show that U does not uniformly impose elementary equivalence. Let $\mathcal{M}_0 \models \mathsf{PA}$ be a model in which every consistent completion of PA is coded. Let $\mathcal{M}_1 \models \mathsf{PA}$ be any Σ_n -elementary extension of \mathcal{M}_0 which is not elementarily equivalent. Let $c_{\mathcal{M}_i}$ be the code of $\mathsf{Th}(\mathcal{M}_i)$. Define

$$T_i^{\mathcal{M}_j}(x) := (c_{\mathcal{M}_i})^{\mathcal{M}_j}.$$

Then $(\mathcal{M}_0, T_0, T_1) \preceq_n (\mathcal{M}_1, T_0, T_1)$ and they are both models of U.

Proposition

If there is an n such that U semantically defines UTB^- with a Σ_n formula, then U syntactically defines UTB^- .

Assume in each model of U, UTB⁻ is definable with a formula of at most Σ_n^* complexity.

Proposition

If there is an n such that U semantically defines UTB^- with a Σ_n formula, then U syntactically defines UTB^- .

Assume in each model of U, UTB⁻ is definable with a formula of at most Σ_n^* complexity.

Proposition

If there is an n such that U semantically defines UTB^- with a Σ_n formula, then U syntactically defines UTB^- .

Assume in each model of U, UTB⁻ is definable with a formula of at most Σ_n^* complexity. Let Sat(P, y) express "P is a satisfaction predicate for formulae of depth y".

Proposition

If there is an n such that U semantically defines UTB^- with a Σ_n formula, then U syntactically defines UTB^- .

Assume in each model of U, UTB⁻ is definable with a formula of at most Σ_n^* complexity. Let Sat(P, y) express "P is a satisfaction predicate for formulae of depth y". Define $T(\ulcorner \phi(x) \urcorner)$ as:

$$\forall \psi \in \Sigma_n^* \bigg(\mathsf{Sat}(\mathsf{True}_{\Sigma_n}(\psi(\dot{x})), \mathsf{dp}(\ulcorner \phi \urcorner)) \to \mathsf{True}_{\Sigma_n}(\ulcorner \psi(\phi(\dot{x})) \urcorner) \bigg)$$

Thank you for your attention.

