Real closures of ω_1 -like models of PA

David Marker

Mathematics, Statistics, and Computer Science University of Illinois at Chicago marker@uic.edu

On-line meeting celebrating Jim Schmerl's 85th birthday.

< A ▶

э

I first met Jim in 1979 in the long running Connecticut Logic Seminar that rotated between Yale, Wesleyan and UConn.

< □ > <

My favorite theorem of Jim's

Question: Are there recursively saturated models of PA that are the Skolem hulls of a sequence of indiscernibles?

Theorem (Abramson and Knight) Yes!

Theorem (Schmerl)

Every countable recursively saturated model of PA is the Skolem hull of a set of indiscernibles!!

• Jim's proof uses combinatorial methods of Nešetril and Rödl.

Real closures of models of PA

Suppose $\mathcal{M} \models PA$. Let $Q(\mathcal{M})$ be the fraction field of \mathcal{M} and let $R(\mathcal{M})$ be the real closure of $Q(\mathcal{M})$.

Theorem (D'Aquino-Knight-Starchenko)

If K is a non-archimedean real closed field and $R \subset K$ is an integer part of K with $R \models PA$, then K is recursively saturated. In particular, if $\mathcal{M} \models PA$, then $R(\mathcal{M})$ is recursively saturated.

Corollary

If \mathcal{M}, \mathcal{N} are countable nonstandard models of PA, then $R(\mathcal{M}) \cong R(\mathcal{N})$ if and only if $SS(\mathcal{M}) = SS(\mathcal{N})$.

i.e., passing from \mathcal{M} to $R(\mathcal{M})$ all information is lost except $SS(\mathcal{M})$.

 $SS(\mathcal{M})$ " = " largest subfield of \mathbb{R} embedding into $R(\mathcal{M})$.

ω_1 -like models

Corollary (DKS) If $\mathcal{M}, \mathcal{N} \models PA$ are countable and $SS(\mathcal{M}) = SS(\mathcal{N})$, then $R(\mathcal{M}) \cong R(\mathcal{N})$.

Question: If \mathcal{M}, \mathcal{N} are ω_1 -like models of PA with $SS(\mathcal{M}) = SS(\mathcal{N})$, is $R(\mathcal{M}) \cong R(\mathcal{N})$?

Theorem (Marker-Steinhorn)

If $\mathcal{M}, \mathcal{N} \models PA$ are ω_1 -like and $SS(\mathcal{M}) = SS(\mathcal{N})$, then the value groups of $R(\mathcal{M})$ and $R(\mathcal{N})$ are isomorphic.

Theorem (Marker-Schmerl-Steinhorn)

There are $(\mathcal{M}_{\alpha} : \alpha < 2^{\aleph_1})$ recursively saturated ω_1 -like models of PA such that $\mathcal{M}_{\alpha} \equiv_{\infty,\omega_1} \mathcal{M}_{\beta}$ but $R(\mathcal{M}_{\alpha}) \not\cong R(\mathcal{M}_{\beta})$ for all $\alpha \neq \beta$.

イロト イポト イヨト イヨト 三日

Main Theorem–Ingredient 1: Conservative Extensions

Definition

Let $\mathcal{M} \models PA$. We say that an elementary end extension $\mathcal{M} \prec_e \mathcal{N}$ is *conservative* if $X \cap \mathcal{M}$ is definable in \mathcal{M} whenever $X \subseteq \mathcal{N}$ is definable in \mathcal{N} .

Two classical facts on models of PA.

Lemma

i) Every model of PA has a conservative elementary end extension. *ii)* Every countable model of PA has a non-conservative elementary end extension.

Ingredient 2: Rather Classless Models

Definition

If $\mathcal{M} \models PA$ we say that $X \subseteq \mathcal{M}$ is a *class* if $\{x \in X : x < a\}$ is definable for all $a \in \mathcal{M}$. We say that $\mathcal{M} \models PA$ is *rather classless* if every class is definable.

Lemma

Suppose that

$$\mathcal{M}_0 \prec_e \mathcal{M}_1 \prec_e \dots \mathcal{M}_\alpha \prec_e \dots, \text{ for } \alpha < \omega_1$$

is a continuous chain of countable elementary end extensions. If

 $\{\alpha < \omega_1 : \mathcal{M}_{\alpha+1} \text{ is a conservative extension of } \mathcal{M}_{\alpha}\}$ is stationary,

then $\bigcup_{\alpha < \omega_1} \mathcal{M}_{\alpha}$ is rather classless.

イロト 不得 トイヨト イヨト 二日

Ingredient 3: Last chance to realize types

Lemma

Suppose that $\mathcal{M} \prec_{e} \mathcal{M}' \prec_{e} \mathcal{M}''$ are models of PA. Then any nonprincipal 1-type q over $R(\mathcal{M})$ realized in $R(\mathcal{M}')$ is already realized in $Q(\mathcal{M}')$.

By o-minimality q is determined by a cut in the ordering of $R(\mathcal{M})$. Suppose $a \in R(\mathcal{M}'')$ realizes q. Without loss of generality 0 < a < 1. If $n > \mathcal{M}$, $b \in R(\mathcal{M}'')$ and $|a - b| < \frac{1}{n}$, then b also realizes q. Pick $d \in \mathcal{M}'$ such that $d > \mathcal{M}$. Find $c \in \mathcal{M}''$ such that $\frac{c}{d} < a < \frac{c+1}{d}$.

Since c < d and $\mathcal{M}' \prec_e \mathcal{M}''$, $c \in \mathcal{M}'$ and $\frac{c}{d}$ realizes q.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ingredient 4: Scott completions

Definition

Let F be an ordered field. An initial segment $I \subseteq F$ is *Dedekindean* if $I + \epsilon \not\subseteq I$ for all $\epsilon > 0$.

For example, consider $F = \mathbb{Q}(\epsilon)$ where ϵ is infinitesimal.

- $I = \{x \in F : x < 1 + \epsilon + \epsilon^2 + \dots + \epsilon^n \text{ for some } n\}$ is Dedekindian
- $I = \{x \in F : x < \pi\}$ is not Dedekindean. (ϵ infinitesimal)
- $I = \{x \in F : x < n \text{ for some } n \in \mathbb{N}\}$ is not Dedekindian. $(\epsilon = 1)$

Definition

An ordered field F is *Scott complete* if every Dedekindian initial segment has a supremum in F.

Theorem (Scott '69)

If F is an ordered field there is a unique Scott complete ordered field $\widehat{F} \supseteq F$ such that F is dense in \widehat{F} .

Scott completions of models of PA

If $\mathcal{M} \models PA$ let $SC(\mathcal{M})$ be the Scott completion of $Q(\mathcal{M})$.

Lemma (Schmerl '85) If $\mathcal{M} \models PA$, then $SC(\mathcal{M})$ is real closed.

Let $A \subseteq \mathcal{M}$ be a class and let

$$I_A = \{x \in Q(\mathcal{M}) : x \leq \sum_{a \in A, a \leq b} \frac{1}{2^{a+1}} \text{ for some } b \in \mathcal{M}\}.$$

• I_A is Dedekindian.

A → I_A is a bijection between classes of M and Dedekidian initial segments in Q(M) ∩ [0, 1].

Basic Construction

For $\mathcal{M}_0 \models PA$ countable and $X \subseteq \omega_1$ stationary construct a continuous chain of countable models

$$\mathcal{M}_0 = \mathcal{M}_0(X) \prec_e \mathcal{M}_1(X) \prec_e \ldots \prec_e \mathcal{M}_\alpha(X) \prec_e \ldots$$
 for $\alpha < \omega_1$

such that $\mathcal{M}_{\alpha+1}$ is a conservative extension of \mathcal{M}_{α} if and only if $\alpha \in X$. Let $\mathcal{M}(X) = \bigcup_{\alpha < \omega_1} \mathcal{M}_{\alpha}(X)$.

Since $\mathcal{M}(X)$ is rather classless all Dedekindian cuts are definable, so $|SC(\mathcal{M}(X))| = \aleph_1$.

Choose a filtration $S_0(X) \subseteq S_1(X) \subseteq \cdots \subseteq S_{\alpha}(X) \subseteq \ldots \alpha < \omega_1$ of $SC(\mathcal{M}(X))$ where each $S_{\alpha}(X)$ is countable.

Main Lemma

Lemma

Suppose X, Y are stationary and $Y \setminus X$ is stationary. Then $R(\mathcal{M}(X))$ is not isomorphic to $R(\mathcal{M}(Y))$.

Any isomorphism $\sigma : R(\mathcal{M}(X)) \to R(\mathcal{M}(Y))$ would extend to an isomorphism of the Scott completions $\sigma : SC(\mathcal{M}(X)) \to SC(\mathcal{M}(Y))$.

We can find $\alpha \in Y \setminus X$ such that: i) σ restricts to an isomorphism between $R(\mathcal{M}_{\alpha}(X))$ and $R(\mathcal{M}_{\alpha}(Y))$; ii) $S_{\alpha}(X)$ is real closed and σ is an isomorphism onto $S_{\alpha}(Y)$; iii) $S_{\alpha}(X)$ is the set of all Dedekindian initial segments of $Q(\mathcal{M}(Y))$ definable over $\mathcal{M}_{\alpha}(X)$ and the same for $S_{\alpha}(Y)$; iv) $S_{\alpha}(X) \cap R(\mathcal{M}(X)) = R(\mathcal{M}_{\alpha}(X))$ and the same for $S_{\alpha}(Y)$.

イロト イポト イヨト イヨト 三日

• There is $A \subset \mathcal{M}_{\alpha+1}(X)$ definable such that $A \cap \mathcal{M}_{\alpha}(X)$ is not definable. Let $b \in \mathcal{M}_{\alpha+1}(X) \setminus \mathcal{M}_{\alpha}(X)$ and

$$x = \sum_{a \in A, a < b} \frac{1}{2^{a+1}}.$$

- $q = \operatorname{tp}(x/\mathcal{M}_{\alpha}(X))$ corresponds to an undefinable Dedekindian cut so not in $S_{\alpha}(\mathcal{M})$.
- $\sigma(q)$ is realized in $R(\mathcal{M}(Y))$ and hence in $Q(\mathcal{M}_{\alpha+1}(Y))$.
- Since $\mathcal{M}_{\alpha+1}(Y)$ is a conservative extension of $\mathcal{M}_{\alpha}(Y)$, $\sigma(q)$ is in $S_{\alpha}(Y)$.

This contradicts the fact that σ is an isomorphism between $S_{\alpha}(X)$ and $S_{\alpha}(Y)$ sending $R(\mathcal{M}_{\alpha}(X))$ to $R(\mathcal{M}_{\alpha}(Y))$.

Final Conclusions

- Usual tricks allow us to find a family (X_α : α < 2^{ℵ1}} of stationary subsets of ω₁ with X_α \ X_β stationary for α ≠ β.
- Adding a predicate for a partial satisfaction class Γ and working in PA^* allows us to assume all \mathcal{M}_{α} are recursively saturated.
- (Kossak) If $\mathcal{M} \equiv \mathcal{N}$ are ω_1 -like recursively saturated models of PA and $SS(\mathcal{M}) = SS(\mathcal{N})$, then $\mathcal{M} \equiv_{\infty,\omega_1} \mathcal{N}$.

Happy Birthday Jim!

April 23, 2020

э