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The original problem
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In Barcelona in 1993 Moira Chas told me of an iteration question in

compact metric spaces which appeared to involve countable ordinals.

[ACS] LL. ALSEDÀ, M. CHAS and J. SMÍTAL. On the structure of the ω-limit sets

for continuous maps of the interval. Internat. J. Bifur. Chaos Appl. Sci.

Engrg. 9 (1999), no. 9, 1719–1729. MR 2000i:37047

Let X be a Polish space and let f : X −→ X be a continuous function. For

k ∈ ω we write fk for the kth iterate of f , so that for each x ∈ X , f0(x) = x

and fk+1(x) = f(fk(x)). Then define the ω-limit set ωf (x) to be the set{
y ∈ X

∣∣ ∃ (strictly) increasing α : ω → ω with lim
n→∞

fα(n)(x) = y
}
.

REMARK ωf (x) is a closed subset of X .
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Define an operator Γf on subsets of X by

Γf (X) =
⋃

{ωf (x) | x ∈ X}.

Then starting from a given point a ∈ X , define a transfinite sequence:

A0(a, f) = ωf (a)

Aβ+1(a, f) = Γf (A
β(a, f))

Aλ(a, f) =
⋂
ν<λ

Aν(a, f) for λ a limit ordinal
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By elementary analysis, A0(a, f) ⊇ A1(a, f) ⊇ A2(a, f) . . . ; and

indeed for all ordinals α < β, Aα(a, f) ⊇ Aβ(a, f).

Thus if we make the following

DEFINITION θ(a, f) =df the least ordinal θ with Aθ(a, f) = Aθ+1(a, f),

we know that θ(a, f) is well defined; and for all δ ⩾ θ, Aδ(a, f) = Aθ(a, f).

edskip

DEFINITION We write A(a, f) for this final set Aθ(a,f)(a, f). We call

A(a, f) the abode, and the ordinal θ(a, f) the score of the point a under

f .

The question raised in 1993 was to investigate the possible behaviour

of the function θ(a, f): what are its possible values ?
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DEFINITION The escape set or boundary is the union over all ordinals β

of the set of those points in ωf (a) eliminated at stage β of the iteration:

E(a, f) =df

⋃
β

(
Aβ(a, f)∖Aβ+1(a, f)

)
.

Here X ∖ Y is the set-theoretic difference {x | x ∈ X and x /∈ Y }.
DEFINITION For x ∈ E(a, f), we write β(x, a, f) for the unique β with

x ∈ Aβ(a, f)∖Aβ+1(a, f).

Thus E(a, f) = ωf (a)∖A(a, f). We say that points in A(a, f) abide,

and points in E(a, f) escape.
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My set-theoretical interest was aroused, and led initially to two papers.

[2a] A. R. D. MATHIAS. Delays, recurrence and ordinals. Proc. London

Math. Soc. (3) 82 (2001) 257–298.

[2b] A. R. D. MATHIAS, Recurrent points and hyperarithmetic sets, in Set

Theory, Techniques and Applications, Curaçao 1995 and Barcelona

1996 conferences, edited by C. A. Di Prisco, Jean A. Larson, Joan

Bagaria and A. R. D. Mathias, Kluwer Academic Publishers, Dor-

drecht, Boston, London, 1998, 157–174.

My initial progress was made by switching attention from the sets

ωf (x) to a binary relation which I called attack.
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DEFINITION x f -attacks y, in symbols x↷f y, if for every open n’h’d G

of y the set {n | fn(x) ∈ G} is infinite.

PROPOSITION (i) if x↷f y and y ↷f z then x↷f z.

(ii) If x↷f a then x↷f f(a) and f(x) ↷f a.

REMARK y ∈ ωf (x) ⇐⇒ x↷f y.

REMARK The advantage of changing to work with the relation ↷f is

that for X second-countable and f continuous, the binary relation ↷f is

Gδ; so that the Kunen–Martin theorem of descriptive set theory may be

applied to show that β(x, a, f) is always countable, and hence that θ(a, f)

never exceeds ω1.
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Background reading

[3] Y. N. MOSCHOVAKIS. Descriptive set theory. (North Holland, 1980).

[4] A. S. KECHRIS. Classical descriptive set theory. Graduate Texts in

Mathematics 156, (Springer, 1995).

[5] C. DELLACHERIE, Un cours sur les ensembles analytiques, in: Analytic

Sets by C. A. Rogers et al., Academic Press, London etc 1980, pp

183–316.

For next week’s talk:

[K] K. KUNEN, Some points in βN, Math. Proc. Cam. Phil. Soc. 80

(1976) 385–398

[B] Andreas BLASS, Ultrafilters: where topological dynamics = algebra

= combinatorics. Topology Proc. 18 (1993), 33–56.



VikaZoominar 6-viii-21 – 10

More recent work

[2c] A. R. D. MATHIAS, Analytic sets under attack, Math. Proc. Cam-

bridge Phil. Soc. 138 (2005) 465–485.

[2d] A. R. D. MATHIAS, Choosing an attacker by a local derivation, Acta

Universitatis Carolinae - Math. et Phys., 45(2004) 59–65.

[2e] A. R. D. MATHIAS, A scenario for transferring high scores, Acta Uni-

versitatis Carolinae - Math. et Phys., 45 (2004) 67–73.
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Yet more recent work

[6a] C. DELHOMMÉ. Transfer of scores to the shift’s attacks of Cantor

space.

[6b] C. DELHOMMÉ. Representation in the shift’s attacks of Baire space.

[formerly On embedding transitive relations in that of shift-attack.]

[6c] C. DELHOMMÉ. Completeness properties of the relation of attack.

Related to next week’s talk:

[M] T.K. Subrahmonian MOOTHATHU, Syndetically proximal pairs,

J. Math. Anal. Appl. 379 (2011) 656–663
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My five publications prove theorems in a Polish (therefore metrisable)

but not necessarily compact space. Blass in his classic paper Ultrafilters:

Where topological dynamics = algebra = combinatorics uses ultrafilters

to good effect when the space is compact but not necessarily metrisable.

Next week I shall try to extend this use of ultrafilters to incompact spaces

in exploring the notion of uniform attack.
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General notation

These two talks apply set-theoretic ideas to a problem of analysis, and

therefore our notation will draw on that of two mathematical traditions.

Thus we usually denote the set {0, 1, 2, . . .} of natural numbers by ω,

though occasionally by N; this visual distinction allows us to write ωn for

the ordinal power and Nn for the set of n-tuples of natural numbers.

N+ is the set {1, 2, 3, . . .} of positive integers: in Definition 4·3 the

difference between N and N+ is important.

On a space, such as Baire space, comprising all sequences of length

ω of members of some set, we define the shift function s thus:

s(ζ)(n) = ζ(n+ 1) for n ⩾ 0.

Here we return to normal set-theoretic convention by considering the

domain of such sequences to be ω = {0, 1, 2, . . .}.
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We write ⊚ for the empty sequence: technically of course it is the

same as the empty set, which we write as ∅; and also the same as the

number zero, which we write as 0, since set-theorists customarily identify

each natural number n with the set {0, 1, . . . n− 1}.
We denote by <ωX the set of finite sequences of points in the set X,

including the empty sequence.

When s is a finite sequence, we write ℓh(s) for its length, so that

s = ⟨s(0), s(1), . . . s(ℓh(s) − 1)⟩. We also write ℓ(s) for its last element,

s(ℓh(s)− 1). Concatenation is denoted by ⌢, so ℓh(s⌢⟨p⟩) = ℓh(s) + 1.
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Set-theoretic preliminaries

The next few slides are taken from §1 of Delays.
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Our constructions will be based on well-founded relations of a par-

ticular kind, well-founded trees of finite sequences.

For a non-empty set X — for example, let X = ω — we define a

relation on the set <ωX.

1·0 DEFINITION t ≼ s ⇐⇒df t is an extension of s; t ≺ s ⇐⇒df t

is an proper extension of s; s ≽ t ⇐⇒df s is an initial segment of t;

s ≻ t ⇐⇒df s is a proper initial segment of t.

1·1 REMARK Thus s ≽ t ⇐⇒ t ≼ s, and so on. ⊚ has no proper initial

segments, but is itself a proper initial segment of every finite sequence of

positive length. Note that longer sequences are lower in this ordering.

1·2 DEFINITION A tree in this talk will mean a subset of <ωX which is

closed under shortening in the sense that s ≽ t ∈ T =⇒ s ∈ T . Thus if T

is non-empty it will contain the empty sequence ⊚. We shall refer to the

members of T as its nodes.
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1·3 DEFINITION A tree T is well-founded if whenever C is a non-empty

subset of T there is an s ∈ C such that no t ≺ s is in C. Such an s is

termed a T -minimal element of C.

1·4 REMARK If X has a well-ordering, as is the case with the two main

examples, or if we assume DC, then saying that T is well-founded is

equivalent to the requirement that there be no infinite path through T :

that is, that there is no function f : ω → X such that for each n, the

finite sequence f ↾n =df ⟨f(0), f(1), . . . , f(n− 1)⟩ is in T .
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Given a well-founded tree T that is closed under shortening we may

define a rank function ϱT on it by recursion:

ϱT (s) = sup{ϱT (t) + 1 | t ∈ T & t ≺ s}

Some comments on this definition: if T consists solely of the empty

sequence, ϱT (⊚) = 0. For any non-empty well-founded T there will be

by definition of well-foundedness nodes of T with no proper extension in

T ; such nodes, which we term bottom nodes of the tree, will have rank

0. Should ϱT not be defined for all nodes of the tree, we may by well-

foundedness find a node s such that ϱT is not defined at s but is defined

for each proper extension of s. But then the recipe tells us how to proceed

to define ϱT at s.
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The above illustrates the process of definition by induction on a well-

founded tree. There is also available a method of proof by induction on a

well-founded tree:

1·5 PROPOSITION Let T be a well-founded tree, and Φ(s) some property.

If ∀s∈T
[
(∀t ≺ s Φ(t)) =⇒ Φ(s)

]
then ∀s∈T Φ(s).

That may be proved by supposing {s | ¬Φ(s)} to be non-empty,

considering a T -minimal element thereof, and reaching a contradiction.

It may also be proved by using the rank function ϱT and considering a

counterexample s with ϱT (s) minimal. Just such an argument proves the

following

1·6 PROPOSITION Let T be a well-founded tree and s ∈ T . For each

ν < ϱT (s) there is a t ≺ s with ϱT (t) = ν.
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Linking escape to well-foundedness

The slides of this section are taken from §2 of Delays.



VikaZoominar 6-viii-21 – 21

We introduce the trees we shall use to calculate β(b) for b ∈ E(a, f).

We shall define for our fixed a and for each b ∈ X a tree T a
b of finite

sequences and show using DC that b ∈ A(a, f) ⇐⇒ T a
b is ill-founded.

2·0 DEFINITION For b ∈ X , set

T a
b =df

{
s ∈ <ωX

∣∣ ℓh(s) > 0 =⇒
(
s(0) = b &

∀i :<ℓh(s) (a↷ s(i)) &

∀i :<ℓh(s)−1 (s(i+ 1) ↷ s(i))
)}
.

Note that if t ≻ s ∈ T a
b , then t ∈ T a

b , so that T a
b is closed under

shortening. Our definition is of most interest when b ∈ ωf (a), since

b /∈ ωf (a) ⇐⇒ T a
b = {⊚}.



VikaZoominar 6-viii-21 – 22

2·1 LEMMA (DC) b ∈ A(a, f) ⇐⇒ ∃ an infinite sequence ⟨xi|i < ω⟩
such that ∀i∈ω a↷ xi and

b = x0 ↶ x1 ↶ x2 ↶ . . . .

Proof : given such a sequence, one checks easily by induction on ξ that

each of its members is in Aξ(a, f), hence is in A(a, f); in particular b = x0
is in A(a, f). If no such sequence exists for a given b, then by DC the

tree T a
b will be well-founded under ≺, and hence we may define a rank

function ϱ = ϱab mapping T a
b to the ordinals by

ϱab (s) = sup{ϱab (s⌢⟨r⟩) + 1 | r ∈ X & s⌢⟨r⟩ ∈ T a
b }.

and show by induction on ξ that ϱab (s) = ξ =⇒ ℓ(s) /∈ Aξ+1(a, f): hence

b /∈ Aϱa
b (⟨b⟩)+1(a, f).
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2·2 COROLLARY (DC) For b ∈ ωf (a), b ∈ E(a, f) ⇐⇒ T a
b is well-

founded.

2·4 PROPOSITION For each b ∈ E(a, f), ϱab (⟨b⟩) < ω1.

2·5 COROLLARY θ ⩽ ω1

Proof : Each b in E(a, f) leaves the A-sequence at the countable stage

ϱab (⟨b⟩) + 1. Hence by stage ω1 all those points that are to escape have

already done so. ⊣ (2·5)
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Points at the end of a path
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We had earlier this easy

PROPOSITION (i) if x↷f y and y ↷f z then x↷f z.

(ii) If x↷f a then x↷f f(a) and f(x) ↷f a.

which now yields this invaluable

PROPOSITION Let f be a continuous map of a Polish space X into itself,

and suppose that we have an infinite sequence of points bi, with b0 ↶f

b1 ↶f b2 . . . ↶f b. Then we can choose integers ni, (increasing if we

wish), such that putting yi = fni(bi), the yi form a Cauchy sequence

converging to a point y with b↷f y ↷f y ↷f bi for each i.

Proof : in these circumstances fn(bj) ↷ bi for j > i and arbitrary n. ⊣
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DEFINITION Let b0 ↶f b1 ↶f b2 . . . be an infinite path descending in the

relation ↷f . We say that a point y lies at the end of the path if it satisfies

two conditions:

(i) there are numbers ni such that y = limi→∞ fni(bi);

(ii) for each i, y ↷f bi.

PROPOSITION If both y and z are at the end of the same path, then

y ↷f z ↷f y; in particular all points at the end of a given path are

recurrent and attack each other.

Proof : True because z attacks each bi, hence attacks each fni(bi); hence

attacks y; and the situation is symmetric.⊣
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3: maximal recurrent points

3·0 DEFINITION A recurrent point is a b such that b↷ b.

It has long been known that the existence of recurrent points is nei-

ther certain nor impossible:

3·1 EXAMPLE Let X = R, and f(x) ≡ x + 1. Then f has no recurrent

points.

3·2 THEOREM (AC) Let X be a compact Polish space and f : X −→ X
continuous. Then recurrent points exist: indeed each x ∈ X attacks at

least one recurrent point.

3·3 REMARK The above use of AC could be reduced to an application

of DC by working in L[a, f ] and appealing to Shoenfield’s absoluteness

theorem, which appears as Theorem 8F.10 on page 526 of [14].
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Wemay use the following lemma since in a metric space second count-

ability and separability are equivalent conditions.

3·4 LEMMA (AC) In a second countable space X there can exist neither

a strictly descending sequence ⟨Cν | ν < ω1⟩ nor a strictly ascending

sequence ⟨Dν | ν < ω1⟩ of non-empty closed subsets of X .

Proof : given a descending counter-example in a space with countable

basis {Ns | s ∈ ω}, pick pν ∈ Cν \ Cν+1, and sν ∈ ω with pν ∈ Nsν and

Nsν ∩ Cν+1 empty. There will be ν < δ < ω1 with sν = sδ. But then

pδ ∈ Cδ ∩Nsδ ⊆ Cν+1 ∩Nsν = ∅, a contradiction. In the ascending case,

pick pν ∈ Dν+1 \ Dν , and sν ∈ ω with pν ∈ Nsν and Nsν ∩ Dν empty.

Again there will be ν < δ < ω1 with sν = sδ. But then pν ∈ Dν+1∩Nsν ⊆
Dδ ∩Nsδ = ∅, another contradiction. ⊣ (3·4)
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3·5 REMARK Hausdorff in §27 of his book Mengenlehre [6] proves with a

beautiful argument that, more generally, there cannot be an uncountable

sequence, whether strictly increasing or strictly decreasing, of sets that

are simultaneously Fσ and Gδ. That may be used to prove that in Baire

space, neither the set {β | β ↷s β} nor for any ε the set {β | β ↷s ε}
is Σ0

2, and therefore the relation Rs cannot be, either; see Proposition

7·6 of [13] for the details, but note that in two places in the proof, βn is

printed instead of β ↾n.
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Proof of 3·2: We know that each ωf (x) is a closed set, which, by sequential

compactness is non-empty, and that if y ∈ ωf (x) then ωf (y) ⊆ ωf (x).

Start from x, and set C0 = ωf (x). We shall define a shrinking sequence

of closed sets all of the form ωf (z).

If Cξ = ωf (xξ) ask if there is a y ∈ Cξ such that ωf (y) is a proper

subset of Cξ: if not, then xξ is recurrent (in a strong sense, indeed). If

there is, pick some such and call it xξ+1, and take Cξ+1 = ωf (xξ+1).

At limit stages, take the intersection, call it C ′
λ: by compactness it

will be non-empty. Pick xλ in it. Then for each ν < λ xν ↷ xλ; so

ωf (xλ) ⊆ C ′
λ. Set Cλ = ωf (xλ) and continue.

By the Lemma this process stops before stage ω1: we have then

reached a z such that ∀w∈ωf (z) w ↷ z: since ωf (z) is non-empty, such a

z is evidently recurrent, and is attacked by our original x. ⊣ (3·2)

3·6 REMARK In such a case z, or the set ωf (z),is called minimal.
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Characterising the abode by recurrent points

The following result shows that provided not every point in ωf (a) es-

capes, recurrent points exist. We emphasize that the space is not assumed

to be compact. The apparent use of the Axiom of Choice is avoidable.

3·7 THEOREM Let X be a complete separable metric space, f : X −→ X
a continuous map, and a, x arbitrary points in X . Then

x ∈ A(a, f) ⇐⇒ ∃b a↷ b↷ b↷ x.
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Maximal recurrent points.

3·18 PROPOSITION Given X , f , and a, suppose that for all i a↷ zi+1 ↷
zi ↷ . . . ↷ z0. Then there are natural numbers m0 < m1 < . . . such

that setting yi = fmi(zi), the sequence (yi) is convergent with limit b,

say, and b ↷ yi for each i. It follows that b is recurrent, and that for all

i, a↷ b↷ zi and ωf (zi) = ωf (yi).

3·19 REMARK Note that if the points z′i form a second set satisfying the

hypothesis of the Proposition, with ∀i zi ↷ z′i ↷ zi, and y′i, b
′ are the

outcome of repeating the argument, then

∀i b↷ zi+1 ↷ z′i+1 ↷ y′i & b′ ↷ z′i+1 ↷ zi+1 ↷ yi

and so b↷ b′ ↷ b.
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3·20 DEFINITION Call a point b maximal recurrent in ωf (a) if a↷ b↷ b

and whenever a↷ c↷ c↷ b, then b↷ c.

With the help of the axiom of choice the above proposition yields the

following

3·21 COROLLARY (AC) If d is a recurrent point in ωf (a), then there is

a point b which is maximal recurrent in ωf (a) with a↷ b↷ d.

Proof : set d0 = d. If d0 is not maximal in ωf (a), pick d1 with a↷ d1 ↷
d1 ↷ d0 ̸↷ d1; if d1 is not maximal, continue. Proposition 3·18 tells

us that our construction can be continued at countable limit ordinals. If

we never encounter a maximal recurrent point, then our construction will

yield for every countable ordinal ν a recurrent point dν with a ↷ dζ ↷
dν ̸↷ dζ for ν < ζ < ω1. But then the sequence ⟨ωf (dν) | ν < ω1⟩
will form a strictly increasing sequence of closed sets of order type ω1,

contradicting Lemma 3·4. ⊣ (3·21)
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3·22 REMARK Again, that use of AC could be reduced to an application

of DC by working in L[a, f ] and appealing to Shoenfield’s absoluteness

theorem.

3·23 REMARK We could also formulate the notion of a maximal recurrent

point in the space X as a whole, without reference to a particular point

a; the same argument will prove that if recurrent points exist, so do

maximal ones. In a case such as the shift function acting on Baire space,

the maximal recurrent points will be simply be those whose orbit is dense

in the whole space.

3·24 REMARK Note that it follows from Theorem 3·15 that each point in

the abode A is in the closure of the set of recurrent points. The converse

need not hold, as we shall see later; and thus the abode is not necessarily

identical with the set of non-wandering points studied by earlier writers

such as Birkhoff, which exactly equals that closure.
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Building points of large countable score

These slides are taken from §4 of Delays;

for more general embeddings, see Delhommé [6b].
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4: Long delays in Baire space

Explicit construction of well-founded trees

For any ordinal η we can uniformly build a tree of height that ordinal:

4·0 DEFINITION For an arbitrary ordinal η let Tη be the set of all strictly

descending sequences of ordinals less than η.

Tη is, naturally, a well-founded tree. We include the empty sequence

⊚ in each Tη as its topmost point.

4·1 PROPOSITION For each η, ϱTη (⊚) = η.

Evidently when η is countable Tη will be isomorphic to a tree U ⊆
<ωω; it will be convenient instead to find a tree, isomorphic to Tη, that

is a subset of the set S we now define.
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4·2 DEFINITION Let S be the set of finite strictly increasing sequences of

odd prime numbers (excluding 1). We count ⊚, the empty sequence, as

a member of S.

4·3 With an eye to applications in §7, we show, more generally, that

given a countable linear ordering (X,<), we may uniformly define a map

ψ, from the set of decreasing finite sequences of members of X to the

set of increasing finite sequences of odd primes, which preserves the end-

extension relation. Note that (X,<) need not be a well-ordering; it might

for example be the set of rationals under the Euclidean order.
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Let h : X
1−1−→ ω. Using h we can assign to each x ∈ X an bijection

(usually not order-preserving !) gx of {y ∈ X | y < x} and either some

finite n or ω.

We set ψ(⊚) = ⊚. We map sequences of length 1 to sequences of

odd primes of length 1, using h composed with an enumeration pi of odd

primes: ψ(⟨x⟩) = ⟨ph(x)⟩.
Now suppose we have already defined ψ(s), where s ̸= ⊚. Let x

be the least element of s, and let pj be the largest element of ψ(s). If

t = s⌢⟨y⟩ where y < x, set ψ(t) = ψ(s)⌢⟨pj+1+gx(y)⟩.
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The plan of attack

We explore and exploit the possibility of embedding countable well-

founded trees into the relation ↷.

4·4 LEMMA Let f : X −→ X be continuous, and let T be a non-empty

well-founded tree with top-most point ⊚. Suppose that we have points xT
and xs (for s ∈ T ) in the space X such that for all s and t in T , xT ↷ xs
and if s ≺ t then xs ↷ xt. Then for each s ∈ T , xs ∈ AϱT (s)(xT , f).

Proof : following 1·6, let r ≺ s =⇒ xr ∈ AϱT (r)(xT , f). Then xs ∈
ωf (xT ) ∩

⋂
{AϱT (r)+1(xT , f) | r ≺ s} which by 1·7 and 0·2 equals

AϱT (s)(xT , f). ⊣ (4·4)
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We would like to have ∀s∈T xs /∈ AϱT (s)+1, so that α < β ⩽ ϱT (⊚)+

1 =⇒ Aα ⊋ Aβ and we should then have θ(xT , f) > ϱT (⊚). The next

lemma gives further conditions on our points xT , xs which will make

that happen. We present this argument in an abstract setting in terms

of a nearness relation between points, which, to emphasize its possibly

asymmetric character, we write as b ▷f x, or, more conveniently, as b ▷ x,

which may be read as “b is near to x”.

4·5 EXAMPLE In our first application we shall take b ▷ x to mean that

for some n ⩾ 0, fn(x) = b; plainly that is liable to be asymmetric. In

our second application we shall take b ▷x to have the plainly symmetrical

meaning that for some non-negative n, m, fm(b) = fn(x). In both we

shall have b ▷ b for every b.
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4·6 LEMMA Let f : X −→ X be continuous, and let T be a non-empty

well-founded tree with top-most point ⊚. Suppose that we have points

xT and xs (for s ∈ T ) in the space X and a relation b ▷ x between points

such that whenever s ∈ T & xT ↷ c ↷ b ▷ xs, then for some r ∈ T with

r ≺ s, c ▷ xr. Then for b ∈ ωf (xT ) and s ∈ T ,

xT ↷ b ▷ xs =⇒ b /∈ Aϱ(s)+1(xT , f).

Proof : write Φ(s) for “xT ↷ b ▷ xs =⇒ b /∈ Aϱ(s)+1(xT , f)”. We suppose

inductively that ∀r ≺ s Φ(r) and prove Φ(s). So suppose xT ↷ c ↷
b ▷ xs. By assumption, ∃r∈T [r ≺ s & c ▷ xr]; by Φ(r), c /∈ AϱT (r)+1, so

c /∈ AϱT (s). As c was arbitrary, b /∈ AϱT (s)+1, and we have proved that

Φ(s) holds. ⊣ (4·6)
These lemmata lead to the following general result:
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4·7 THEOREM Let X be a complete separable metric space, let f : X −→
X be continuous, and let T be a non-empty well-founded tree with top-

most point ⊚. Suppose that we have points xT and xs (for s ∈ T ) in the

space X and a relation b ▷f x between points of ωf (xT ) such that for all

s, t in T , writing ↷ for ↷f and ▷ for ▷f ,

(4·7·0) xT ↷ xs;

(4·7·1) s ≺ t =⇒ xs ↷ xt;

(4·7·2) xs ▷ xs;

(4·7·3) xT ↷ c ↷ b ▷ xs =⇒ c ▷ xr for some r ∈ T

with r ≺ s.

Then θ(xT , f) > ϱT (⊚).
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In the fourth section of the paper Delays we construct for particular

well-founded trees T of arbitrary countable rank points xs and xT in

Baire space satisfying the hypotheses of the above theorem, and find that

θ(xT , s) = ϱT (⊚) + 1: we then modify our examples to obtain in each

space points zT with θ(zT , f) = ϱT (⊚).

In the fifth section of Delays, we construct points in certain compact

spaces to which the theorem applies, though the corresponding modifica-

tion proves troublesome, and the transfer theorems of Delhommé give a

welcome simplification of the discussion and improvement of the results.

In the sixth section of Delays we essay applications to certain ill-

founded trees.
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Examples of long delays in the Baire space

4·8 DEFINITION Baire space, N , is {b | b : ω −→ ω}; topologically it is

the product of ℵ0 copies of ω, each with the discrete topology.

4·9 DEFINITION The shift function s : N −→ N is defined by s(b)(n) =

b(n+ 1) for b : ω −→ ω.

REMARK Some call that the backward shift: it does lose information.

The construction below together with the remarks at the end of the

section will prove the following:

4·10 THEOREM Let N be Baire space ωω, and s the shift operation.

Then for each countable ordinal ζ there is a point a ∈ N such that

θ(a, s) = ζ.
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Our plan in Delays was this: to each s ∈ S we defined a point xs ∈ N ;

we wrote b▷x to mean that b is a finite shift of x in the sense that b = sn(x)

for some n ⩾ 0 and x ∈ N ; then for each well-founded T ⊆ S we defined

a point xT so that the points xT and xs for s ∈ T together with the

relations ↷=↷s and ▷ satisfy the hypotheses of Theorem 4·7.
4·11 DEFINITION We write u ⊏ x to mean that the non-empty finite

sequence u occurs as a segment of the infinite sequence x.

4·12 LEMMA If x ↷ y and u ⊏ y then u occurs infinitely often as a

segment of x.
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Some open problems: more next week
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PROBLEM (Cummings) Is score a Π1
1 norm ?

PROBLEM What are the possible scores under s of recursive members of

N ?

We know that there are recursive β ∈ N where the score of β is any

given recursive ordinal, or the first non-recursive ordinal [2b] or the first

uncountable ordinal [2c]: are there any others ?

A possibility might be ωL
1 .

The notion of a uniformly recurrent point has been much studied:

PROBLEM Is there a reasonable definition of “x uniformly attacks y”.
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Preparations for a point of uncountable score

The slides of this section are taken from §3 of Analytic sets under attack.
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Finite trees and paths

We write ℓh(u) for the length of a finite sequence u.

3·0 DEFINITION F =df {u | u a non-empty finite sequence(
u(1), u(2), . . . , u(ℓh(u))

)
of natural numbers u(i) with 0 ⩽ u(i) < i for 1 ⩽ i ⩽ ℓh(u)}.

3·1 REMARK Contrary to habitual practice among set theorists, the

terms of u are indexed by 1, . . . , ℓh(u) rather than 0, . . . , ℓh(u)− 1.

For 1 ⩽ k ⩽ ℓh(u) we write u⩽k for the sequence
(
u(1), . . . , u(k)

)
;

that will be an element of F .
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3·3 DEFINITION If u =
(
u(1), u(2), . . . , u(ℓh(u))

)
∈ F , a positive

u-sequence is a non-empty finite sequence s = (p1, . . . , pℓ) with 1 ⩽ p1 <

p2 < · · · < pℓ ⩽ ℓh(u), so that ℓ = ℓh(s) and pℓ = max s; we further

require that u(p1) = 0, and for 1 ⩽ i < ℓh(s), u(pi+1) = pi.

The u-sequences are the positive u-sequences and the empty sequence,

which we write as ⊚.

As above, we write s⩽k for the sequence (p1, . . . , pk), where 1 ⩽ k ⩽
ℓh(s); that too will be a positive u-sequence. Further, we interpret s⩽0

as the empty sequence, ⊚.
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We read an element u of F as coding a finite downwards-branching

tree with 0 as the unique top point and u(i) immediately above i for each

i with 1 ⩽ i ⩽ ℓh(u).

3·4 EXAMPLE Let u ∈ F be the sequence (0,0,2,1,0). Then, with our

convention on indexing, u(1) = 0;u(2) = 0;u(3) = 2;u(4) = 1;u(5) = 0,

so we read u as coding this tree:

0
/ | \
1 2 5
| |
4 3

Thus the u-sequences are ⊚, (1), (2), (5), (1,4), and (2,3),
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3·5 We shall build our point in a space of infinite sequences of symbols, of

which there will be three kinds, recorders, predictors andmarkers. Certain

symbols will contain information that is either an element u of F—such

symbols will be called recorders, because they contain information about

the recent past of the infinite sequence of symbols under consideration—

or else a pair of finite sequences s, u where u ∈ F and s is a positive

u-sequence—such symbols will be called predictors because they contain

information about the near future of that infinite sequence. Nothing is

required of the third kind of symbol, the markers, save that there be a

countable infinity of them and that they be all distinct from each other

and from all recorders and predictors.
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It is extremely important that, from the point of view of the shift

function that we shall apply, each symbol is a single object; and, to give

visual emphasis to that point, we shall use square brackets [, ] to encase

each individual symbol, whereas we shall use pointed brackets
〈
,
〉
, to

encase finite or infinite sequences of symbols.

We shall associate to each recorder and each predictor two natural

numbers, its weight and its height.
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3·6 DEFINITION A recorder is an object [u] where u is in F . Its weight is

0 and its height is the length ℓh(u) of u as a member of F .

3·7 DEFINITION A predictor is an object [s;u] where u ∈ F and s is a

positive u-sequence. s will be called the path of the predictor [s;u], and

u its tree. The predictor’s weight is the length of its path, and its height

is the length of its tree.

3·8 REMARK The weight of [s;u] is not greater than its height.

3·9 DEFINITION We say that s is tight in u, or that u tightly contains s,

if s is a u-sequence and max s = ℓh(u). In the contrary case we shall use

the words loose and loosely. We may indeed define the looseness of u over

s as ℓh(u)−max s.
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3·10 For each u ∈ F and each u-sequence s we shall define a finite se-

quence zus of symbols. Our definition will proceed by a mode of induction

that will also be used in proving our theorem, which we shall call double

induction. To spell the method out in greater detail: we first consider

the case s = ⊚. Then we suppose that m ⩾ 1 and that we have already

treated all pairs u, s with s a u-sequence of length < m. On that sup-

position, we take an s of length m, and consider all u ∈ F for which s

is a u-sequence, starting with those u for which ℓh(u) = max s, and then

progressively treating longer u; thus for given s we proceed by induction

on the looseness of u over s. The following convention will be useful.

3·11 DEFINITION We write s′ for the sequence s with its last element

removed—so that if s is of length 1, s′ = ⊚—and we write u′ for u with

its last element removed.
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We proceed to our definition of zus by double induction, and first

treat the case of s = ⊚.

3·12 DEFINITION For u ∈ F ,

zu⊚ =df

〈
[u⩽1], [u⩽2], . . . , [u⩽ℓh(u)−1], [u]

〉
.

3·13 REMARK The length of zu⊚ equals that of u.

3·14 EXAMPLE

z
(0,0,2,1,0)
⊚ =

〈
[(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)], [(0, 0, 2, 1, 0)]

〉
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Now for u ∈ F and s a positive u-sequence we shall define zus .

3·15 DEFINITION

zus =df


〈
[s;u]

〉⌢zus′ if max s = ℓh(u);

zu
′

s
⌢〈[s;u]〉⌢zus′ if max s < ℓh(u).

The first clause handles the case that u tightly contains s, and the

second the cases when ℓh(u) is strictly greater than max s.

3·16 REMARK Note that [s;u] occurs only once in zus ; we shall refer to

it as the peak of zus . It is the only symbol in zus with sum of weight and

height equal to ℓh(s) + ℓh(u).

We give several examples to illustrate that definition.
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3·17 EXAMPLE If s is of length 1, then zus =
〈
[s;u]

〉⌢zu⊚ if max s = ℓh(u)

and zus = zu
′

s
⌢〈[s;u]〉⌢zu⊚ otherwise.

3·18 EXAMPLE If u is the sequence (0,0,2,1,0), then zu(5) is〈
[(5); (0, 0, 2, 1, 0)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)], [(0, 0, 2, 1, 0)]

〉
,

a sequence of six symbols, whereas zu(2) is〈
[(2);(0, 0)], [(0)], [(0, 0)], [(2); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)],

[(2); (0, 0, 2, 1)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)],

[(2); (0, 0, 2, 1, 0)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)], [(0, 0, 2, 1, 0)]
〉
,

which has eighteen, of which the heights, in order, are 2, 1, 2; 3, 1, 2, 3;

4, 1, 2, 3, 4; 5, 1, 2, 3, 4, 5.
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z
(0)
(1) =

〈
[(1); (0)], [(0)]

〉
;

z
(0,0)
(1) =

〈
[(1); (0)], [(0)], [(1); (0, 0)], [(0)], [(0, 0)]

〉
;

z
(0,0,2)
(1) =

〈
[(1); (0)], [(0)], [(1); (0, 0)], [(0)], [(0, 0)],

[(1); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)]
〉
;

z
(0,0,2,1)
(1) =

〈
[(1); (0)], [(0)], [(1); (0, 0)], [(0)], [(0, 0)],

[(1); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)],

[(1); (0, 0, 2, 1)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)]
〉
;

z
(0,0,2,1,0)
(1) =

〈
[(1); (0)], [(0)], [(1); (0, 0)], [(0)], [(0, 0)],

[(1); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)],

[(1); (0, 0, 2, 1)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)],

[(1); (0, 0, 2, 1, 0)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)], [(0, 0, 2, 1, 0)]
〉
.
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z
(0,0,2,1)
(1,4) =

〈
[(1, 4); (0, 0, 2, 1)]

〉⌢z(0,0,2,1)(1)

=
〈
[(1, 4); (0, 0, 2, 1)],

[(1); (0)], [(0)], [(1); (0, 0)], [(0)], [(0, 0)],

[(1); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)],

[(1); (0, 0, 2, 1)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)]
〉
;
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z
(0,0,2,1,0)
(1,4) = z

(0,0,2,1)
(1,4)

⌢〈[(1, 4); (0, 0, 2, 1, 0)]〉⌢z(0,0,2,1,0)(1)

=
〈
[(1, 4); (0, 0, 2, 1)],

[(1); (0)], [(0)],

[(1); (0, 0)], [(0)], [(0, 0)],

[(1); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)],

[(1); (0, 0, 2, 1)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)],

[(1, 4); (0, 0, 2, 1, 0)],

[(1); (0)], [(0)],

[(1); (0, 0)], [(0)], [(0, 0)],

[(1); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)],

[(1); (0, 0, 2, 1)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)],

[(1); (0, 0, 2, 1, 0)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)], [(0, 0, 2, 1, 0)]
〉
.
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z
(0,0,2)
(2,3) =

〈
[(2, 3); (0, 0, 2)]

〉⌢z(0,0,2)(2) ;

z
(0,0,2,1)
(2,3) = z

(0,0,2)
(2,3)

⌢〈[(2, 3); (0, 0, 2, 1)]〉⌢z(0,0,2,1)(2) ;

z
(0,0,2,1,0)
(2,3) = z

(0,0,2,1)
(2,3)

⌢〈[(2, 3); (0, 0, 2, 1, 0)]〉⌢z(0,0,2,1,0)(2)

= z
(0,0,2)
(2,3)

⌢〈[(2, 3); (0, 0, 2, 1)]〉⌢z(0,0,2,1)(2)
⌢〈[(2, 3); (0, 0, 2, 1, 0)]〉⌢z(0,0,2,1,0)(2)

which equals
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[(2, 3); (0, 0, 2)],

[(2); (0, 0)], [(0)], [(0, 0)],

[(2); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)],

[(2, 3); (0, 0, 2, 1)],

[(2); (0, 0)], [(0)], [(0, 0)],

[(2); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)],

[(2); (0, 0, 2, 1)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)],

[(2, 3); (0, 0, 2, 1, 0)],

[(2); (0, 0)], [(0)], [(0, 0)],

[(2); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)],

[(2); (0, 0, 2, 1)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)],

[(2); (0, 0, 2, 1, 0)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)], [(0, 0, 2, 1, 0)]
〉
.
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3·19 EXAMPLE Suppose that 3 + max t = ℓh(v). Let vi = v⩽i+max t, so

that v0 = v⩽max t and v3 = v.

Then zvt is〈
[t; v0]

〉⌢zv0t′ ⌢〈[t; v1]〉⌢zv1t′ ⌢〈[t; v2]〉⌢zv2t′ ⌢〈[t; v]〉⌢zvt′ ,
which has precisely the four predictors shown of weight equal to the length

of t; all other predictors in zvt will be of lesser weight.
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Here is a first example of proof by double induction:

3·20 PROPOSITION If s is not ⊚, then the first symbol of zus is the

predictor [s;u⩽max s].

Proof : If u tightly contains s, zus =
〈
[s;u]

〉⌢zus′ of which the first symbol

is [s;u], which equals [s;u⩽max s]. Otherwise zus = zu
′

s
⌢〈[s;u]〉⌢zus′ , of

which the first symbol is that of zu
′

s , which, by the induction hypothesis,

is the predictor [s;u′⩽max s]; but that in the context equals [s;u⩽max s].

⊣ (3·20)
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Notation for finite sequences

3·21 DEFINITION t ≼ s ⇐⇒df t is an extension of s; t ≺ s ⇐⇒df t

is an proper extension of s; s ≽ t ⇐⇒df s is an initial segment of t;

s ≻ t ⇐⇒df s is a proper initial segment of t.

3·22 REMARK Thus s ≽ t ⇐⇒ t ≼ s, and so on. ⊚ has no proper initial

segments, but is itself a proper initial segment of every finite sequence of

positive length. Note that longer sequences are lower in this ordering.

3·23 DEFINITION We shall say that two finite sequences s and t cohere if

either s ≽ t or t ≽ s.
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Properties of finite sequences

3·24 PROPOSITION Let u and v be members of F , and let t be both an

u-sequence and a v-sequence.

(i) ℓh(u) = ℓh(zu⊚);

(ii) for ℓ ⩽ ℓh(v), zv⊚ ↾ℓ = zv↾ℓ⊚ ;

(iii) v ≺ u =⇒ zvt ≺ zut ;

(iv) zvt = zut =⇒ v = u;

(v) zvt ≺ zut =⇒ v ≺ u.
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Proof of 3·24 (iii): If t = ⊚, use (ii): otherwise use an earlier instance to

note that zvt ≺ zv
′

t ≼ zut .

Proof of 3·24 (iv): Compare peaks.

Proof of 3·24 (v): The peak of zvt cannot be in zut , for otherwise u = v;

whence zut ≽ zv
′

t , giving, inductively, v′ ≼ u.
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3·25 DEFINITION An m-predictor is a predictor of weight exactly m. An

m-stretch is a finite sequence of symbols all of weight at most m.

3·26 LEMMA Let u ∈ F , s a u-sequence of weight > m. Let x ⊑ zus be

an m-stretch.

(i) x ⊑ zus′ ;

(ii) in fact x ⊑ zus⩽m
.
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Proof of 3·26 (i): Its weight forbids the peak of zus to lie in x.

Case 1: s is tight in u. Then zus =
〈
[s;u]

〉⌢zus′ , whence x ⊑ zus′ .

Case 2: otherwise. Then zus = zu
′

s
⌢〈[s;u]〉⌢zus′ , so either x ⊑ zu

′

s

or x ⊑ zus′ ; if the second alternative is false, we may iterate the first,

progressively shortening u till it does tightly contain s, and then apply

Case 1. ⊣ (3·26·i)
Proof of 3·26 (ii): By iterating Lemma 3·26 (i), progressively shortening

s. ⊣ (3·26·ii)
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Indeed we can sharpen that result:

3·27 PROPOSITION Let x be an m-stretch with all symbols of height at

most h. Suppose that x ⊑ zus . Then x ⊑ z
u⩽h
s⩽m .

Proof : For fixed x by double induction on s and u. If the peak of zus
occurs in x, then both the height and weight of x equal those of zus , and

then the proposition is trivially true. Otherwise x ⊑ zu
′

s or x ⊑ zus′ ; in the

first case the height is less and in the second the weight. In either case

we have a reduction to an earlier instance of the induction. ⊣ (3·27)

3·28 LEMMA The recorders in zus are those in zu⊚: namely non-empty

initial segments of u. Hence any two recorders in zus cohere.

Proof : By applying Proposition 3·27 to 0-stretches of length 1. ⊣ (3·28)
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3·29 LEMMA If s ≽ t and t is a u-sequence, then zus is a final segment of

zut ; if s ≻ t, that final segment is immediately preceded by the predictor

[s+;u], where s+ = t⩽ℓh(s)+1.

Proof : Write t0 = t, and progressively write tk+1 = t′k till we reach

tn = s. If n = 0 the Lemma is trivial; if n > 0, then we remark that

for each k, zutk ends in zutk+1
which is preceded by [tk;u]; finally note that

tn−1 = t⩽ℓh(s)+1. ⊣ (3·29)

3·30 LEMMA if u ≽ v and s is a u-sequence, then zus ≽ zvs ; if u ≻ v, the

term in zvs after that occurrence of zus is [s;u+]. where u+ = v⩽ℓh(u)+1.

Proof : The first part is Proposition 3·24 (iii) rephrased; the second part

holds if v′ = u, and stays true for longer v by an easy induction, as then

u ≻ v′ ≻ v. ⊣ (3·30)
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3·31 LEMMA If [s;u] occurs in zvt then s ≽ t and u ≽ v.

Proof : By a double induction on t and v. The lemma is true if [s;u] =

[t; v]. Otherwise [s;u] occurs in zvt′ or, provided t is loose in v, in zv
′

t ; in

either case we have a reduction to an earlier instance of the induction, to

which we then link either the fact that t′ ≻ t or that v′ ≻ v. ⊣ (3·31)

3·32 LEMMA An occurrence of [s;u] in zvt is followed by the whole of zus′ .

Proof : By a similarly structured induction on t and v. ⊣ (3·32)

3·33 LEMMA In any zus the immediate successor of an m-predictor is a

symbol of weight m− 1.

Proof : Immediate from the definition if m = 1; by Proposition 3·20
otherwise. ⊣ (3·33)
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3·34 LEMMA If s is of length m + 1,
〈
[s;u]

〉⌢x is a final segment of zws
and x is an m-stretch, then u = w and x = zus′ .

Proof : [s;w] is the last symbol of weight m+ 1 in zws . ⊣ (3·34)

3·35 PROPOSITION If s is of length m+ 1, x is an m-stretch, and y =df〈
[s;u]

〉⌢x⌢〈[s; v]〉 ⊑ zwr , then u = v′ and x = zus′ .

Proof by double induction: By Proposition 3·27, we can suppose r = s.

If v ̸= w, we have zws = zw
′

s
⌢〈[s;w]〉⌢zws′ and therefore y ⊑ zw

′

s ; thus we

may reduce the length of w until w = v.
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So our proposition is now reduced to the case that y ⊑ zvs . We then

have 〈
[s;u]

〉⌢x⌢〈[s; v]〉 ⊑ zv
′

s
⌢〈[s; v]〉⌢zvs′ ;

since [s; v] occurs in neither zv
′

s nor in zvs′ , we may be sure that the last

symbol of y occurs as the peak of zvs ; but then
〈
[s;u]

〉⌢x forms a final

segment of zv
′

s , so we may apply Lemma 3·34 to infer that u = v′ and

x = zus′ . ⊣ (3·35)
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3·36 COROLLARY If y =
〈
[s;u1]

〉⌢x1⌢〈[s;u2]〉⌢x2⌢〈[s;u3]〉 ⊑ zwr , where

s is of length m + 1 and both x1 and x2 are m-stretches, then x1 ≻ x2,

and ℓh(u2) = ℓh(u1) + 1.

Proof : In the circumstances, x1 = zu1

s′ , x2 = zu2

s′ , and u1 = (u2)
′.

⊣ (3·36)

3·37 LEMMA If s is of lengthm+1, x is anm-stretch, and x⌢
〈
[s; v]

〉
⊑ zwt ,

then x is a final segment of zv
′

s .

Proof : The hypotheses imply, by Proposition 3·27, that x⌢
〈
[s; v]

〉
⊑ zvs ,

in which the only occurrence of [s; v] is the peak; but then x must be a

final segment of the preceding sequence, which is zv
′

s . ⊣ (3·37)
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3·38 LEMMA If the recorder [e], of height at least 2, occurs in zus , its

predecessor is [e⩽ℓh(e)−1]; if of height 1, its predecessor, if any, will be a

predictor of weight 1.

3·39 PROPOSITION If zus (i) and z
u
s (i+1) are both recorders then ℓh(zus (i+

1)) = 1 + ℓh(zus (i)).

3·40 REMARK The unique longest m-stretch in zus is at the end, namely

zus⩽m
: for if s is of weight m, zus is itself an m-stretch; and if s is of greater

weight, the m-stretches in zus are those of zus′ and, provided s is loose in

u, of zu
′

s . By induction, the unique longest of those are zus⩽m
and zu

′

s⩽m
,

of which two the first is in any case strictly longer. ⊣ (3·40)
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3·41 PROPOSITION Suppose that x =df

〈
[s;u]

〉⌢zus′ ⊑ zwr but is not a

final segment thereof. Then the first symbol after the segment x of zwr is

of the form [t; v] where v′ = u and t ≼ s, and if t ≺ s there will be a later

occurrence in zwr of a symbol of weight that of s.

3·42 REMARK
〈
[s;u]

〉⌢zus′ is a final segment of zus , properly so if and only

if s is loose in u.

Towards the proof of Proposition 3·41, we first prove a Lemma to

cover the case s = r.

3·43 LEMMA x =df

〈
[s;u]

〉⌢zus′ is a final segment of zws if and only if

u = w.

Proof : One way is covered by Remark 3·42. For the other, since zws =

zw
′

s
⌢〈[s;w]〉⌢zws′ , the peak of zws is its last symbol of weight ℓh(s) and

therefore if x is a final segment of zws , the first symbol of x must be that

peak, whence zus′ = zws′ , whence u = w. ⊣ (3·43)
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Proof of Proposition 3·41: We consider s and u to be fixed and do a

double induction on r and w.

As always, we have

zwr = zw
′

r
⌢〈[r;w]〉⌢zwr′

The hypotheses imply that r ≼ s and, by Lemma 3·43, that w ≺ u; hence

the peak of zwr cannot lie in x, and therefore either x ⊑ zwr′ or x ⊑ zw
′

r .

If x ⊑ zwr′ , then x will not be a final segment of zwr′ , and so the

induction will apply.

If x ⊑ zw
′

r , either w′ ≺ u, whence by Lemma 3·43 x is not final in

zw
′

r , and the induction will again apply; or w′ = u, x is final—again by

Lemma 3·43—in zw
′

r and the next symbol is [r;w], which is of the desired

form [t; v] with v′ = u and t ≼ s.

The final clause follows from Lemma 3·33. ⊣ (3·41)
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3·44 PROPOSITION In any zus , if the same symbol, of weight m, occurs

twice, then between the two occurrences there must be an occurrence of

a symbol of weight m+ 1.

Proof by double induction: The indicated symbol, that which repeats,

cannot be the peak of zus , which occurs only once there. If s is tight in

u, the two occurrences must both be in zus′ , and we have reduced to an

earlier case.

Otherwise zus = zu
′

s ∩
〈
[s;u]

〉
∩ zus′ , and there are three possibilities:

both occurrences are before the peak, when both lie in zu
′

s ; both lie af-

ter, and therefore both lie in zus′—both times we have a reduction to an

earlier case—or one lies before the peak and the other after; but then the

proposition is proved, for the peak is of weight greater than m, and, if of

weight > m+1, will by Lemma 3·33 immediately be followed by symbols

of weights declining by 1 at each step, thus reaching a symbol of weight

m+ 1 before the second occurrence of the indicated symbol. ⊣ (3·44)
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The remaining slides are taken from §4 of Analytic sets under attack.

Introducing infinite sequences

We have introduced two of our three kinds of symbol. For the third,

the markers, we take infinitely many objects [m0], [m1], . . . distinct from

each other and from all recorders and predictors.

We define Y to be the space of all sequences of length ω of sym-

bols. Here we return to normal set-theoretic convention by considering

the domain of such sequences to be ω = {0, 1, 2, . . .}.
On Y we may define the shift function, which we again denote by s:

s(ζ)(n) = ζ(n+ 1) for n ⩾ 0.

As in section 4 of Delays we write ζ▷ξ, read ζ is near to ξ, if ζ = sn(ξ)

for some n ⩾ 0.
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4·0 DEFINITION The weight of a point ζ of Y is the supremum of the

weight of its predictors: thus either a natural number or ∞. The height

of a point ζ ∈ Y is the supremum of the height of its recorders and

predictors: again either a natural number or ∞.
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Introducing the real b

At last we are in a position to define our point b, which will lie in the

space Y.

4·1 DEFINITION Enumerate all sequences zus where u ∈ F and s is a

u-sequence, in some recursive fashion as zi (i = 0, 1, . . .).

Define

b =df z0
⌢〈[m0]

〉⌢z1⌢〈[m1]
〉⌢ . . .

4·2 THEOREM θ(b, s) = ω1.

To classify the points of Y attacked by b, we shall use the infinite

trees to which the members of F are codes of finite approximations.
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That’s all for this week, folks !


