
Initial self-embeddings of models of set theory

joint work with Ali Enayat (University of Gothenburg)

Zach McKenzie



H. Friedman’s Self-embedding Theorems
H. Friedman, Countable models of set theory (1973):

Theorem
Let M = 〈M,∈M〉 and N = 〈N,∈N 〉 be countable nonstandard models
of power admissible set theory that also satisfy separation for formulae
that are Σ in the expanded language that includes the unary powerset
operation. Then M is isomorphic to an initial segment of N that is a
union of ranks (Vαs) of N if and only if

(i) M and N have the same well-founded sets and code the same
subclasses of these well-founded sets, AND

(ii) for any Σ-formula in the expanded language that contains the unary
powerset operation, φ(~a), with parameters that are well-founded
sets, if M satisfies φ(~a) then so does N .

Theorem
Every countable nonstandard model of ZF is isomorphic to a proper
initial segment consisting of a union of ranks (Vαs) of itself.



H. Friedman’s Self-embedding Theorems

The arguments used to prove these results also work in the context of
arithmetic:

Theorem
Every countable nonstandard model of PA is isomorphic to a proper
initial segment of itself.
In both versions of H. Friedman’s Theorem (for set theory and
arithmetic):
I The images of the embeddings can be made to be Σn-elementary

substructures (for any fixed concrete n)
I The embedding can be made to pointwise fix any proper initial

segment of the model
In the context of set theory, H. Friedman’s theorem guarantees the
existence of an embedding whose image is initial in the sense that its
image is a union of ranks.



Preliminaries
There also two weaker notions of an initial segment of a model of set
theory:
I Transitive subclass
I Transitive subclass that contains all subsets

In this talk we will investigate versions of H. Friedman’s Self-embedding
Theorem that guarantee the existence of an embedding whose image is a
transitive subclass. This will also allow us to examine self-embeddings of
models of set theory that do not satisfy the powerset axiom.
Throughout this talk I will use L to denote the language of set theory–
first-order logic with a binary membership relation (∈).
I In addition to the Lévy classes of formulae ∆0,Σ1,Π1, . . . we will

also have cause to consider the Takahashi classes ∆P0 ,ΣP1 ,ΠP1 , . . .
Definition
The class ∆P0 is the class of formulae built inductively from atomic
formulae using the connectives ∧, ∨, ¬ and ⇒, and quantification in the
form Qx ∈ y and Qx ⊆ y where Q is either ∃ or ∀, and x and y are
distinct free variables.



Preliminaries
I ΣP1 is the class of formulae in the form ∃~xφ where φ is ∆P0
I ΠP1 is the class of formulae in the form ∀~xφ where φ is ∆P0
I etc.

Let Γ be a class of L-formulae.
(Γ-separation) For all φ(x ,~z) ∈ Γ,

∀~z∀w∃y∀x(x ∈ y ⇐⇒ (x ∈ w) ∧ φ(x ,~z)).

(Γ-collection) For all φ(x , y ,~z) ∈ Γ,

∀~z∀w((∀x ∈ w)∃yφ(x , y ,~z)⇒ ∃C(∀x ∈ w)(∃y ∈ C)φ(x , y ,~z)).

(Γ-foundation) For all φ(x ,~z) ∈ Γ,

∀~z(∃xφ(x ,~z)⇒ ∃y(φ(y ,~z) ∧ (∀x ∈ y)¬φ(x ,~z))).

If Γ = {x ∈ z} then we will refer to Γ-foundation as set foundation.



Preliminaries
(TCo) Every set is contained in a transitive set.
(WO) Every set can be well-ordered.
(Axiom H) For every cardinal κ, there exists a transitive set T that
contains every transitive set with cardinality ≤ κ (this says that we
have sets that look like the Hκs).

The α-Dependent Choice Scheme is the natural class version of
dependent choice:

(Π1
∞ −DCα) For all L-formulae φ(x , y ,~z),

∀~z


∀g(∀γ ∈ α)

(
(g is a function) ∧ (dom(g) = γ)⇒

∃yφ(g , y ,~z)

)
⇒

∃f
(

(f is a function) ∧ (dom(f ) = α)
∧(∀β ∈ α)φ(f � β, f (β),~z)

)
 .

Note that in the absence of powerset, Zermelo’s Well-ordering Principle
(WO) is not equivalent to the Axiom of Choice (Zarach (1982)).



Kripke-Platek Set Theory (with infinity)
Definition
KPI is the L-theory with axioms: extensionality, emptyset, pair, union,
infinity, ∆0-separation, ∆0-collection and Π1-foundation.
This is the modern presentation of Kripke-Platek Set Theory with the
Axiom of Infinity. Unlike the Admissible Set Theory studied in H.
Friedman’s 1973 paper and the Kripke-Platek Set Theory of Barwise’s
“Admissible Sets and Structure”, KPI only includes Π1-foundation
instead of full class foundation. A transitive set that is either Vω or a
model of KPI is called an admissible set.
I KPI is capable of defining the rank function (ρ) and this definition

is ∆1.
I KPI is capable of defining satisfaction in set structures.
I KPI is capable of defining the levels of L (the Lαs) and proving that

the function α 7→ Lα is ∆1.
I KPI is capable of defining the partial satisfaction predicates

SatΣn (m, x) and SatΠn (m, x) and proving that these predicates are
Σn and Πn respectively.



KPP

Definition
KPP is obtained from KPI by adding powerset, ∆P0 -collection and
ΠP1 -foundation.
This is the modern presentation of H. Friedman’s Power Admissible Set
Theory from his 1973 paper. Again, KPP only includes ΠP1 -foundation
instead of full class foundation.
I KPP proves the ΣP1 -Recursion Theorem.
I KPP proves that for all ordinals α, Vα exists, and that the function
α 7→ Vα is ∆P1 .

I KPP does not prove that there is no largest cardinal (in fact there
is a transitive model of KPP with only recursive ordinals).

I KPP does not prove Axiom H. In fact, Mathias (2001) shows that
KPP plus the assertion that there is no largest cardinal does not
prove Axiom H.



Mostowski Set Theory

Definition
MOST is obtained from KPI by adding powerset, Σ1-separation and
WO.
I Mathias (2001) has shown that MOST is weak (equiconsistent with

Mac Lane Set Theory) and consistent with V = L.
I MOST proves that every well-founded extensional relation is

isomorphic to a transitive set (Mostowski’s Lemma).
I MOST proves that for every cardinal κ, Hκ exists (i.e. Axiom H

holds).
I MOST is axiomatised by: extensionality, pair, union, powerset,

TCo, infinity, ∆0-separation, WO, set foundation and Axiom H.
I MOST does not prove that for every ordinal α, Vα exists.
I MOST does not prove that ℵω exists, or even the statement

(∀n ∈ ω)(ℵn exists).



ZFC minus Powerset with Dependent Choices

Definition
Let ZFC be Zermelo-Fraenkel Set Theory axiomatised using the
collection scheme instead of the replacement scheme and WO instead of
Choice. ZFC− is obtained from ZFC by removing the powerset axiom.
ZF− is obtained from ZFC− by removing WO.
ZFC− + ∀α(Π1

∞ −DCα) is obtained from ZFC− by adding, for all
ordinals α, the scheme Π1

∞ −DCα.
I S. Friedman, Gitman and Kanovei (2019) have recently shown that

ZFC− does not prove Π1
∞ −DCω.

I Flanagan (1975) shows that a global well-order that can be used in
all instances of the separation and collection scheme can be
conservatively added to ZFC− + ∀α(Π1

∞ −DCα).



Three notions of initial self-embedding

Let M = 〈M,∈M〉 and N = 〈N,∈N 〉 be L-structures.
I We write M⊆e N if N is and end-extension of M. I.e. M is a

transitive subclass of N .
I We write M⊆Pe N if M⊆e N and for all x ∈ M and for all

y ∈ N, if N |= (y ⊆ x), then y ∈ M.
I Let M,N |= KPI. We say that N is a rank extension M if
M⊆e N and for all α ∈ OrdM and for all x ∈ N, if
N |= (α = ρ(x)), then x ∈ M.

Example
Let M = 〈M,∈M〉 be a model of ZFC. Then
I 〈ωM3 ,∈M〉 ⊆e M
I 〈HMℵ3

,∈M〉 ⊆Pe M
I M is a rank extension of 〈VMω3 ,∈

M〉



Three notions of initial self-embedding

Let M |= KPI and let j :M−→M be an embedding (an injective
function that preserves ∈M). Write j[M] for the substructure of M
corresponding to the image of j .
I We say that j is a proper initial self-embedding if j[M] ⊆e M

and j[M] 6=M.
I We say that j is a proper P-initial self-embedding if j[M] ⊆Pe M

and j[M] 6=M.
I We say that j is a proper rank-initial self-embedding if M is a

rank extension of j[M] and j[M] 6=M.

Theorem
(Gorbow (2018), implicit in H. Friedman (1973)) Let M |= KPP . If j is
a proper P-initial self-embedding, then j is a proper rank-initial
self-embedding.



Self-embedding Theorems

Theorem
(Gorbow (2018)) Every countable nonstandard model M of
KPP + ΣP1 -separation has a proper rank-initial self-embedding.
Moreover, given any α ∈ OrdM, there exists a proper rank-initial
self-embedding of M that fixes every element of VMα .

Theorem
(Enayat, Kaufmann, M. (2018)) Every countable recursively saturated
model of MOST + Π1-collection admits a proper P-initial
self-embedding.



The well-founded part

Definition
Let M |= KPI. The well-founded part or standard part of M,
denoted WF(M), is the substructure ofM with underlying set, WF(M),
that consists of all sets x such that ∈M is well-founded on TC({x}). If
WF(M) 6=M, then we say that M is nonstandard. The standard
ordinals of M, denoted o(M), is the substructure of M with underlying
set o(M) = WF(M) ∩OrdM. If ωM ∈ o(M), then we say that M is
ω-standard. Mostowski’s Collapsing Lemma ensures that both o(M)
and WF(M) are isomorphic to transitive sets. In particular, o(M) is
isomorphic to an ordinal that is called the standard ordinal of M.

Lemma
If M is a nonstandard model of KPI, then WF(M) ⊆Pe M.

Theorem
(H. Friedman (1973), Barwise (1975)) If M is a nonstandard model of
KPI + Σ1-foundation, then WF(M) is admissible.



Initial self-embeddings and the well-founded part

Lemma
Let M |= KPI. If j :M−→M is an initial self-embedding, then j is
the identity on WF(M).

Proof.
External ∈-induction.

Lemma
Let M |= KPI and let j :M−→M be an initial self-embedding. If
x ∈M is definable Σ1-formula with parameters that are fixed by j, then
x is fixed by j.

Proof.
Suppose that x is the unique element of M such that M |= φ(x ,~a),
where φ is Σ1 and ~a are fixed by j . So, since ~a is fixed,
j[M] |= φ(j(x),~a). Since j[M] ⊆e M and φ is Σ1, M |= φ(j(x),~a),
which implies that x is fixed.



A nonstandard model of ZFC− that has no initial
self-embedding

Definition
Let M |= KPI. (a) The well-founded part of M is c-bounded in M,
where “c” stands for “cardinalitywise”, if there is some x ∈ M such that
for all w ∈WF(M) M |= |x | > |w |. (b) The well-founded part of M is
c-unbounded in M if the well-founded part of M is not c-bounded in
M, i.e., if for all x ∈ M, there exists w ∈WF(M) such that
M |= |x | ≤ |w |.

Theorem
Let M |= KPI. If the well-founded part of M is c-unbounded, then M
admits no proper initial self-embedding.

Proof.
Let x ∈ M. Let w ∈WF(M) be such that M |= (|x | ≤ |w |). There is a
topped well-founded extensional relation Rx ⊆ w × w ∈WF(M) that is
isomorphic to TC({x}). This yields of Σ1-formula with parameters w
and Rx that defines x .



A nonstandard model of ZFC− that has no initial
self-embedding

Theorem
There is a countable nonstandard model of ZFC− that admits no proper
initial self-embedding.

Proof.
Let M be a model of ZFC with standard ω, but nonstandard ω1. Then
〈HMℵ1

,∈M〉 is a model of ZFC− such that the well-founded part of this
model is c-unbounded.



Uncountable non-standard models of ZFC with no initial
self-embeddings

Definition
Let M = 〈M,∈M〉 be a model of ZF. We say that M is ℵ1-like if
|M| = ℵ1, but for all α ∈ OrdM, {x ∈ M | M |= (x ∈ Vα)} is countable.

Theorem
(Keisler and Morely (1968)) Every consistent extension of ZF has an
ℵ1-like model.
It is clear that any ℵ1-like model of ZF will not admit a proper
rank-initial self-embedding.



Uncountable non-standard models of ZFC with no initial
self-embeddings

Theorem
If M is an ℵ1-like model of ZF + V = L, then M admits no proper
initial self-embedding.

Proof.
Suppose that j :M−→M is an embedding such that j[M] ⊆e M.
The fact that M is ℵ1-like ensures that j[OrdM] = OrdM. And, using
V = L, every element of M is definable by a Σ1-formula with ordinal
parameters. This implies that j[M] =M.



Summary

I We have introduced the notion of “initial self-embedding” that is
more general than the “rank-initial self-embeddings” studied by H.
Friedman.

I We have shown that if M is a model of KPI such that every set in
M is the same size as a well-founded set (the well-founded part of
M is c-unbounded), then M admits no initial self-embedding.

I This allows us to construct a nonstandard model of ZFC− that is
not isomorphic to a transitive subclass of itself.

I Next time, we will investigate when proper initial self-embedding do
exist.

Thank you!



Brief recap. . .
Let M |= KPI and let j :M−→M be an embedding (an injective
function that preserves ∈M). Write j[M] for the substructure of M
corresponding to the image of j .
I We say that j is a proper initial self-embedding if j[M] ⊆e M

and j[M] 6=M.
I We say that j is a proper P-initial self-embedding if j[M] ⊆Pe M

and j[M] 6=M.
I We say that j is a proper rank-initial self-embedding if M is a

rank extension of j[M] and j[M] 6=M.
In the last talk we showed that if M |= KPI and every set in M is
(according to M) the same size as well-founded set (the well-founded
part of M is c-unbounded), then M admits no proper initial
self-embedding. This allowed us to show that there is a nonstandard
model of ZFC− with no proper initial self-embedding. Today we
investigate when nonstandard models of KPI do admit proper initial
self-embeddings. . .



Constructing initial self-embeddings
Let M = 〈M,∈M〉. If a ∈ M, then we use a∗ to denote the set
{x ∈ M | M |= (x ∈ a)}.

Definition
Let M |= KPI. The standard system of M is the set

SSy(M) = {y∗ ∩WF(M) | y ∈ M}

If A ∈ SSy(M) and y ∈ M is such that y∗ ∩WF(M) = A, then we say
y codes A.

Definition
Let M |= KPI. We say that the well-founded part of M is contained if
there exists c ∈ M such that WF(M) ⊆ c∗.

Lemma
Let M |= KPI. If M is ω-nonstandard, then the well-founded part of
M is contained.



Constructing initial self-embeddings

Proof.
WF(M) ⊆ (LMω )∗.

Lemma
Let n ∈ ω and let m = max{1, n}. Let M |= KPI + Σm-separation. If
the well-founded part of M is contained and ~a ∈ M, then

{〈pφ(x , ~y)q, b〉 | φ is Σn, b ∈WF(M) and M |= φ(b,~a)} ∈ SSy(M)

Proof.
Let ~a ∈ M and c be such that WF(M) ⊆ c∗. Since SatΣn (m, x) is Σm,
we can use Σm-separation to find y with M |= (y ⊆ c) that codes this
class.
When our model is ω-nonstandard, we replace the use of separation
above by a overspill argument.



Constructing initial self-embeddings

Lemma
Let n ∈ ω and let m = max{1, n}. Let
M |= KPI + Πm−1-collection + Πn+1-foundation be such that M is
ω-nonstandard. If ~a ∈ M, then

{〈pφ(x , ~y)q, b〉 | φ is Σn, b ∈WF(M) and M |= φ(b,~a)} ∈ SSy(M)

Proof.
Note that

A = {〈pφ(x , ~y)q, b〉 | φ is Σn, b ∈WF(M) and M |= φ(b,~a)}

is a subclass of Vω. For all n ∈ ω, there is a set yn ∈ M such that yn
codes A∩Vn. We can “overspill” this inside M to get y ∈ M that codes
A.



Constructing initial self-embeddings
Theorem
Let p ∈ ω and let M be a countable model of
KPI + Σp+1-separation + Πp-collection. Let b,B ∈ M and c ∈ B∗ with
the following properties:
(I) M |=

⋃
B ⊆ B

(II) WF(M) ⊆ B∗

(III) for all Πp-formulae φ(~x , y , z) and for all a ∈WF(M),

if M |= ∃~xφ(~x , a, b), then M |= (∃~x ∈ B)φ(~x , a, c).

Then there exists a proper initial self-embedding j :M−→M such that
j[M] ⊆ B∗, j(b) = c and j[M] ≺p M.

Proof.
(Sketch) A proper initial self-embedding j :M−→M is obtained by
using a back-and-forth argument to construct sequences 〈ui | i ∈ ω〉 and
〈vi | i ∈ ω〉, and defining j(ui ) = vi for all i ∈ ω.



Constructing initial self-embeddings

Proof.
(Sketch, continued.) After stage n ∈ ω, u0, . . . , un ∈ M and
v0, . . . , vn ∈ B∗ will have been chosen so as to maintain:

(†n) for all Πp-formulae, φ(~x , z , y0, . . . , yn), and for all a ∈WF(M),
if M |= ∃~xφ(~x , a, u0, . . . , un), then
M |= (∃~x ∈ B)φ(~x , a, v0, . . . , vn).

The “forth” stage of the construction chooses un in order to ensure that
the domain of j is all of M. The coding lemmas on the preceding slides
and (†n−1) allow a corresponding vn ∈ B∗ to be chosen to maintain (†n).
The “back” stage of the construction eventually ensures that the image
of the embedding is transitive. If vn is in the transitive closure of
{v0, . . . , vn−1}, then the coding lemmas on the preceding slides and
(†n−1) are used to choose un to maintain (†n).



Constructing initial self-embeddings

The same back-and-forth argument with “separation” replaced by
“overspill” when coding classes yields:

Theorem
Let p ∈ ω and let M be a countable model of
KPI + Πp-collection + Πp+2-foundation that is ω-nonstandard. Let
b,B ∈ M and c ∈ B∗ with the following properties:
(I) M |=

⋃
B ⊆ B

(II) WF(M) ⊆ B∗

(III) for all Πp-formulae φ(~x , y),

if M |= ∃~xφ(~x , b), then M |= (∃~x ∈ B)φ(~x , c).

Then there exists a proper initial self-embedding j :M−→M such that
j[M] ⊆ B∗, j(b) = c and j[M] ≺p M.



Constructing initial self-embeddings

Theorem
Let p ∈ ω, M be a countable model of
KPI + Σp+1-separation + Πp-collection such that the well-founded part
of M is contained, and let b ∈ M. Then there exists a proper initial
self-embedding j :M−→M such that b ∈ rng(j) and j[M] ≺p M.

Proof.
Σp+1-separation + Πp-collection (= strong Πp-collection) can be used
to obtain a transitive set B that satisfies the conditions called for in the
preceding self-embedding results from a set C that contains the
well-founded part of M.

Theorem
Let p ∈ ω, M be a countable ω-nonstandard model of
KPI + Πp-collection + Πp+2-foundation, and let b ∈ M. Then there
exists a proper initial self-embedding j :M−→M such that b ∈ rng(j)
and j[M] ≺p M.



Nonstandard models with proper initial self-embeddings

Corollary
Let M |= KPI + Σ1-separation be such that the well-founded part of
M is contained. Then there exists a proper initial self-embedding
j :M−→M.

Corollary
Let M |= KPI + Π2-foundation be ω-nonstandard. Then there exists a
proper initial self-embedding j :M−→M.

Question
Is every ω-nonstandard model of KPI isomorphic to a proper transitive
subclass of itself?

Question
If M |= KPI is such that the well-founded part of M is contained, then
does M admit a proper initial self-embedding?



A model of MOST + Π1-collection with a proper initial
self-embedding but no proper P-initial self-embedding

I Let M = 〈M,∈M〉 be a countable ω-nonstandard model of
ZFC + V = L.

I Define a substructure N = 〈N,∈M〉 by

N =
⋃

n∈ω
(HMℵn )∗ where (HMℵn )∗ = {x ∈ M | M |= (x ∈ Hℵn )}

I N is an ω-nonstandard model of MOST + Π1-collection. Therefore
N admits a proper initial self-embedding.

I The infinite cardinals of N are exactly ℵn where n is a standard
natural number. Therefore, since any P-initial embedding preserves
cardinals, N admits no proper P-initial embedding.



A model of MOST + Π1-collection with a proper P-initial
self-embedding but no proper rank-initial self-embedding

I The model N outlined on the previous slide satisfies
(†) For all cardinals κ, there exists a set X with cardinality κ and
countable rank.

To see this consider Vω,P(Vω),P2(Vω), . . ..
I Let Q be a countable recursively saturated model of

MOST + Π1-collection + (†). Therefore Q has a proper P-initial
self-embedding.

I If h : Q −→ Q is a proper P-initial self-embedding, then h must
map Hκs from Q to Hh(κ) in Q (everything is Hh(κ) is coded as a
subset of h(κ)). But this means that there must be a cardinal in Q
that is not in the image of h and therefore a set of countable rank
that is also not included in the image of h.



Every countable ω-nonstandard model of ZF is isomorphic
to a transitive subclass of HC of its own L

The Lévy-Shoenfield Absoluteness Theorem shows that if M is a model
of ZF, then M and HLM

ℵ1
have satisfy the same Σ1 theory. This yields

the following embedding result:

Theorem
Let M be a countable model of ZF that is not ω-standard. Then there
exists a proper initial self-embedding j :M−→M such that
j[M] ⊆e (HLM

κ )∗, where κ = (ℵL
1)M.

Proof.
Work inside M. Let B = HL

ℵ1
. Note that B is transitive, WF(M) ⊆ B∗

and, by the Lévy-Shoenfield Absoluteness Theorem, for all ∆0-formulae,
φ(~x , z), if M |= ∃~xφ(~x , ∅), then M |= (∃~x ∈ B)φ(~x , ∅). Therefore,
there exists a proper initial self-embedding j :M−→M such that
j[M] ⊆ B∗ = (HLM

ℵ1
)∗.



Every countable ω-nonstandard model of ZF is isomorphic
to a transitive subclass of HC of its own L

This is related to the following two results:

Theorem
(Barwise (1971)) Let M be a countable model of ZF. Then there exists
structures N1 and N2 such that
(I) M⊆e N1 ⊆e N2,

(II) N2 |= ZF + V = L, and
(III) N1 = 〈(HN2

ℵ1
)∗,∈N2〉.

Theorem
(Hamkins (2013)) Let M be a countable model of ZF. Then there exists
an embedding of M into its own L.



The relationship between ‘contained’ and ‘c-unbounded’
Recall from last week:

Definition
Let M |= KPI. (a) The well-founded part of M is c-bounded in M,
where “c” stands for “cardinalitywise”, if there is some x ∈ M such that
for all w ∈WF(M) M |= |x | > |w |. (b) The well-founded part of M is
c-unbounded in M if the well-founded part of M is not c-bounded in
M, i.e., if for all x ∈ M, there exists w ∈WF(M) such that
M |= |x | ≤ |w |.

Theorem
Let M |= KPI. If the well-founded part of M is c-unbounded, then M
admits no proper initial self-embedding.
We have seen that if M satisfies enough set theory and the well-founded
part of M is contained, then M admits a proper initial self-embedding.
So, what is the relationship between the well-founded part being
contained and c-(un)bounded?



The relationship between ‘contained’ and ‘c-unbounded’

Lemma
Let M |= KPI be ω-standard. If the well-founded part of M is
contained, then WF(M) |= KPP .

Proof.
Let c ∈ M be such that WF(M) ⊆ c∗. If x ∈WF(M), then define
P(x) = {y ∈ c | y ⊆ x}- this is a set by ∆0-separation. The fact that
WF(M) ⊆Pe M ensures that P(x) is the powerset of x in both M and
WF(M), and implies that WF(M) satisfies ∆0-separation and
powerset. The fact that there is no least ordinal in M\WF(M) ensures
that WF(M) satisfies ∆P0 -collection.

Lemma
Let M |= KPI. If the well-founded part of M is contained, then the
well-founded part of M is c-bounded.



The relationship between ‘contained’ and ‘c-unbounded’

Proof.
Let c ∈ M be such that WF(M) ⊆ c∗. Since WF(M) is closed under
the powerset operation from M implies that for all w ∈WF(M),
M |= |w | < |c|.

Lemma
Let M be a model of ZFC− + ∀α Π1

∞−DCα. If the well-founded part of
M is c-bounded, then WF(M) |= KPP .

Proof.
Let κ be an M-cardinal such that for all w ∈WF(M), M |= (|w | < κ).
Note that it is enough to show that WF(M) satisfies powerset. Let
Y ∈WF(M) be such that Y has no powerset in WF(M). Consider
sequences that enumerate the subsets of Y in M. Any such sequence
whose range is not the powerset of Y can be extended. Therefore,
Π1
∞−DCκ can be used to obtain a sequence of subsets of Y of

cardinality ≥ κ, which is a contradiction.



The relationship between ‘contained’ and ‘c-unbounded’
Lemma
Let M be a model of ZFC− + ∀α Π1

∞−DCα such that the well-founded
part of M is c-bounded. Then the well-founded part of M is contained.

Proof.
Since WF(M) |= KPP , for all α ∈ o(M), M |= (Vα exists). Moreover,
this will ‘overspill’ to give us a Vβ in M, where β is ill-founded, and this
set will contain the well-founded part of M.

Theorem
Let M be a countable nonstandard model of ZFC− + ∀α Π1

∞−DCα.
Then the following are equivalent:
(I) The well-founded part of M is c-bounded,

(II) WF(M) |= KPP ,
(III) For all n ∈ ω and for all b ∈ M, there exists a proper initial

self-embedding j :M−→M such that b ∈ rng(j) and
j[M] ≺n M.



Elementary submodels of models of ZF−

The result on the previous slide is related to the following:

Theorem
(Quinsey (1980)) Let n ∈ ω. If M |= ZF− is nonstandard, then there
exists N ⊆e M such that N 6=M, N ≺n M and N |= ZF−.
We have shown that if M is countable and satisfies Dependent Choices
in the above, then there exists N ≺n M such that N ∼=M, N ⊆e M
and N 6=M exactly when the well-founded part of M is c-bounded.

Question
Is there a countable model M of ZFC− such that the well-founded part
of M is c-bounded in M, but M does not admit a proper initial
self-embedding?



Thank you!


