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Fragments of first- and second-order arithemetic
▶ The language of first-/ second-order arithmetic:

L1 = {+,×, <,=, 0, 1}, L2 = {+,×, <,=, 0, 1,∈}.
▶ ∆0

0,Σ
0
n,Π

0
n-formulas are defined by counting the number of blocks

of unbounded quantifiers.
▶ A formula is ∆0

n if it is equivalent to both a Σ0
n and a Π0

n formula
(over some model or theory).

▶ IΣ0
n consists of PA− and Induction for all Σ0

n formulas φ:
φ(0, c) ∧ (∀x (φ(x, c) → φ(x+ 1, c)) → ∀x φ(x, c).

▶ BΣ0
n consists of I∆0

0 and Collection for all Σ0
n formulas φ:

∀x < a ∃y φ(x, y, c) → ∃b ∀x < a ∃y < b φ(x, y, c).

▶ (Paris–Kirby 1978) I∆0
0 + exp ⊣ BΣ0

1 + exp ⊣ IΣ0
1 ⊣ BΣ0

2 ⊣ IΣ0
2 . . .

and none of the converses holds.
▶ RCA0 = IΣ0

1 +∆0
1-comprehension.

WKL0 = RCA0+“each infinite binary tree has an infinite path”.
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End extensions

Definition
Let M,K |= PA−, M ⊆ K is an end extension if

∀x ∈ K \M ∀y ∈M y < x.

Denote it by M ⊆e K. We say that the extension is proper if
K ̸=M , and it is n-elementary if all the Σn-formulas are absolute
between M and K.
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End extensions vs Elementarity

End extensions with elementarity provides a model-theoretic
characterization of the strength of induction/collection in the
ground model.
Theorem (MacDowell–Specker 1959)
Every model of PA has a fully elementary proper end extension.

Theorem (Paris–Kirby 1978)
For any n ∈ N, let M |= I∆0 + exp be countable, then

∃K ̸=M, M ≼e,n+2 K ⇐⇒ M |= BΣn+2.

In particular, if M has a fully elementary proper end extension,
then M |= PA, i.e., the converse of MacDowell–Specker Theorem
holds.
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Generalizing Paris–Kirby
Theorem (Paris–Kirby 1978)
For any n ∈ N, let M |= I∆0 + exp be countable, then

∃K ̸=M, M ≼e,n+2 K ⇐⇒ M |= BΣn+2.

Questions
▶ What end extension property characterizes M |= IΣn+2?
▶ For which theory T , we can always let K |= T in the

Paris–Kirby Theorem?

IΣn ✓ trivial from (n+ 2)-elementarity
BΣn+1 ?

IΣn+1 X implies M |= BΣn+3
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The Kaufmann–Clote question

This remaining question is due to Clote, where he mentioned that
the same question is raised by Kaufmann in the context of models
of set theory.
Question (Kaufmann–Clote)
Let n ∈ N, does every countable model of BΣn+2 admit a proper
(n+ 2)-elementary end extension K |= BΣn+1?

Theorem (S.)
Yes.
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Another story: the regularity principle

Definition (Regularity principle)
▶ Let φ(x, y) be a first-order formula. Then Rφ denotes the

universal closure of the following formula:

∃cfx ∃y < a φ(x, y) → ∃y < a ∃cfx φ(x, y).

▶ For any formula class Γ, RΓ = I∆0 + {Rφ | φ ∈ Γ}.

Theorem (Mills–Paris 1984)
For each n ∈ N, BΣn+2 ⇔ RΣn+1 ⇔ RΠn.
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Regularity principle vs End extensions

The existence of proper end extension with elementarity indicates
certain regularity principle via a ‘nonstandard analysis’ argument.
Proposition
Let M |= I∆0 + exp. If ∃K ̸=M, M ≼e,n+2 K, then M |= RΠn.

Proof.
Let M |= ∃cfx ∃y < a φ(x, y) for some φ(x, y) ∈ Πn.

1. Transfer this Πn+2-statement to K by elementarity.
2. Pick some d > M in K such that K |= φ(d, c) for some
c < a. Then for any b ∈M , K |= ∃x > b φ(x, c).

3. Transfer each of these statements back to M . Then
M |= ∃cfx φ(x, c).
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Regularity principle vs End extensions

Proposition
Let M |= I∆0 + exp. If ∃K ̸=M, M ≼e,n+2 K |= BΣn+1, then

M |= ∀x ∃y < a φ(x, y) → ∃y < a ∃cfx φ(x, y)

for any φ ∈ Πn+1.

Proof.
Same as the previous proof. Notice that in step 1,
∀x ∃y < a φ(x, y) is Πn+2 over BΣn+1, so this statement
correctly transfers to K.
We call this formula the weak regularity principle WRφ.
Corollary
If K–C question has a positive answer, then BΣn+2 ⊢ WRΠn+1.
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A syntactic proof of BΣn+2 ⊢ WRΠn+1 via WKL0

Proposition
BΣ0

2 + WKL0 ⊢ WRΠ0
1.

Proof.
Let (M,X ) |= BΣ0

2 + WKL0 + ∀x ∃y < a ∀z θ(x, y, z) for some
θ ∈ ∆0

0. Consider the following a-branching tree T :

σ ∈ T ⇐⇒ ∀x, z < lenσ θ(x, σ(x), z).

By IΣ0
1, for each l ∈M there is a σ with lenσ = l such that

∀z θ(x, σ(x), z), so T is infinite. Pick a infinite path P ∈ X of T .
Then (M,X ) |= ∀x ∀z θ(x, P (x), z). Finally, pick a c < a such
that ∃cfx P (x) = c by BΣ0

2.
The first-order version follows by a standard relativization
argument and the fact that WKL0 is Π1

1-conservative over BΣ0
2.

Question
How does such argument relate to the K–C question?
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From first- to second-order ultrapower

▶ Paris–Kirby’s construction is based on a (first-order)
∆n+1-ultrapower construction.

▶ One can show that such ∆n+1-ultrapowers always fail to
satisfy BΣn+1 in the K–C question.

▶ The syntactic proof above indicates that we need to work in a
second-order context with WKL0.
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From first- to second-order ultrapower
Definition (Second-order ultrapower)
Let (M,X ) |= IΣ0

1, and U be an ultrafilter on X such that all the
A ∈ U are cofinal in M . Then the second-order ultrapower
(F/U ,X ) is defined to be (F/ ∼,X ), where
▶ F is the class of total functions in X and
f ∼ g ⇐⇒ {x ∈M | f(x) = g(x)} ∈ U .

▶ For any A ∈ X , [f ] ∈ A ⇐⇒ {x ∈M | f(x) ∈ A} ∈ U .

Theorem (Łoś, essentially Kirby 1984)
▶ For any φ(x) ∈ Σ0

1(M,X ),

(F/U ,X ) |= φ([f ]) ⇐⇒
∃A ∈ X , {x ∈M | (M,X ) |= φ(f(x))} ⊇ A ∈ U .

▶ (M,X ) ≼Σ0
2
(F/U ,X ).
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The construction
By a relativization argument and expansion to WKL0, it suffice to
show the following:
Lemma
For any countable (M,X ) |= BΣ0

2 + WKL0, there is a
second-order ultrapower (M,X ) ⊆e (F/U ,X ) |= BΣ0

1.
Proof.
The argument for ‘⊆e’ is standard: For each f ∈ F , if
[f ] < a ∈M is forced to be true, that is

{x ∈M | f(x) < a} ∈ U

then by BΣ0
2, we can let {x ∈M | f(x) = b} ∈ U for some b < a,

and thus [f ] = b. Otherwise, we can always force [f ] > a by setting

{x ∈M | f(x) > a} ∈ U .
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The construction (cont.)

To have (F/U ,X ) |= BΣ0
1, we need to ‘force’ all the instances of

BΣ0
1 step by step:

∀y < [g] ∃z θ([f ], y, z) → ∃b ∀y < [g] ∃z < b θ([f ], y, z),

where θ ∈ ∆0
0 and f, g are total functions in X .

Strategy: We always try to force the conclusion to be true in
(F/U ,X ). That is, try to set

{x ∈M | ∃d ∀y < g(x) ∃z < d θ(f(x), y, z)} ⊇ A ∈ U

for some A ∈ X . If we succeed, then by Łoś’s theorem, we are
done. If not, then we can make use of the extra information given
by the failure.
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The construction (cont.)
The failure means {x ∈M | ∃d ∀y < g(x) ∃z < d θ(f(x), y, z)} is
bounded. By BΣ0

1, there is a b ∈M such that:

(M,X ) |= ∀x > b ∃y < g(x) ∀z ¬θ(f(x), y, z).

Similar to the proof of BΣ0
2 +WKL0 ⊢ WRΠ0

1, we can construct a
finite branching tree T , and there is a infinite path(total function)
P ∈ F of T bounded by g, such that

(M,X ) |= ∀x > b ∀z ¬θ(x, P (x), z).

Such P ∈ F provides a witness of ∃y < [g] ∀z ¬θ([f ], y, z) by
Łoś’s theorem.
Theorem
For any n ∈ N and countable M |= BΣn+2, there is a
(n+ 2)-elementary proper end extension M ⊆e K |= BΣn+1.
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The strength of WRΓ in the I-B hierarchy

We continue analyzing the strength of WRΓ.
Theorem
For each n ∈ N,
▶ BΣn+2 ⇔ WR(Σn+1 ∨Πn+1) ⇔ WRΣ0(Σn).
▶ WR(Σn+1 ∧Πn+1) ⊢ IΣn+2.

Question
For which formula class Γ, WRΓ ⇔ IΣn+2?
Does WR(Σn+1 ∧Πn+1) ⇔ IΣn+2?
(Which end extension property characterize M |= IΣn+2?)
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Induction up to an initial segment

Proposition
For each n ∈ N, let M,K be models of I∆0 + exp and M ⊆e K.
Then TFAE:
▶ For any φ(x, y) ∈ Σn+1(K) and a ∈M ,

K |= ∃b ∀x < a (∃y φ(x, y) ↔ ∃y < b φ(x, y)).

▶ For any φ(x) ∈ Σn+1(K) and a ∈M , {x < a | K |= φ(x)} is
coded in K (and actually in M).

We call them K |= M -IΣn+1.
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Regularity principle vs End extension (cont.)
There is also a corresponding ‘nonstandard analysis’ argument for
K |= M -IΣn+1.
Proposition
Let M |= I∆0 + exp. If ∃K ̸=M, M ≼e,n+2 K |= M -IΣn+1, then
M |= WR(Σn+1 ∧Πn+1).

Proof.
The proof is still the same. Notice that
∀x ∃y < a (φ(x, y)∧ψ(x, y)) is equivalent to a Πn+2-formula over
IΣn+1, and actually over M -IΣn+1 since a ∈M . So again this
statement correctly transfers to K.

Remark
Actually the argument above proves M |= WRφ, where
φ(x, y) ∈ Σ0(Σn+1), and x does not appear in the bound of a
bounded quantifier. In particular, M |= WRφ if φ(x, y) is a
Boolean combination of Σn+1-formulas.
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Characterizing IΣn+2 by end extensions

Proposition
For any n ∈ N and countable M |= IΣn+2,
∃K ̸=M, M ≼e,n+2 K |= M -IΣn+1.
Again, it suffice to show the second-order version. This time, we
don’t need WKL0.
Proposition (Second-order version)
For any countable (M,X ) |= RCA0 + IΣ0

2, there is a second-order
ultrapower (M,X ) ⊆e (F/U ,X ) |= M -IΣ0

1.

The proof is mild generalization of Clote (1985), where he proves
that every countable M |= IΣn+2 has a proper (n+ 2)-elementary
end extension to some K |= M -BΣn+1, which is defined similar to
M -IΣn+1.
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The construction

Proof.
For each uniform sequence of Σ0

1-definable sets {Ai}i<b, say
Ai = {x ∈M | φ(f(x), i)} where φ ∈ Σ0

1 and f ∈ F , we try to
maximize

{i < b | ∃A ∈ X , Ai ⊇ A ∈ U}.

That is, let B ∈ X be the intersection of all the subsets currently
enumerated into U . Take the largest c < 2b such that∩

i∈Ack(c)
Ai ∩B is cofinal in M,

and put a subset of this set in X into U . Then such c will code
{i < b | (F/U ,X ) |= φ([f ], i)}.
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Characterizing IΣn+2 by end extensions

Theorem (S.)
For any n ∈ N, let M |= I∆0 + exp be countable, then

∃K ̸=M, M ≼e,n+2 K |= M -IΣn+1 ⇐⇒ M |= IΣn+2.

Theorem (S.)
For each n ∈ N, WR(Σn+1 ∧Πn+1) ⇔ IΣn+2.

Question
Is there a syntactic proof of the equivalence above?
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Summary
▶ K–C question has a positive answer:

∃K ̸=M, M ≼e,n+2 K |= BΣn+1 ⇐⇒ M |= BΣn+2.

▶ A model-theoretic characterization of IΣn+2:

∃K ̸=M, M ≼e,n+2 K |= M -IΣn+1 ⇐⇒ M |= IΣn+2.

▶ The strength of the weak regularity principle:

BΣn+2 ⇔ WR(Σn+1 ∨Πn+1) ⇔ WRΣ0(Σn).

IΣn+2 ⇔ WR(Σn+1 ∧Πn+1).

Thank You!
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