Ramsey quantifiers

Stephen G. Simpson sgslogic@gmail.com sgslogic.net Vanderbilt University

Jim Schmerl Celebration April 22, 2025 Angus Macintyre, *Ramsey quantifiers in arithmetic*, Karpacz 1979, Springer Lecture Notes in Mathematics, 834, 186–210, 1980

James H. Schmerl and Stephen G. Simpson, *On the role of Ramsey quantifiers in first order arithmetic*, Journal of Symbolic Logic, 47, 2, 423–435, 1982.

Let PA be the usual axiom system for first-order Peano arithmetic. The standard model of PA is $\mathbb{N}, +_{\mathbb{N}}, \times_{\mathbb{N}}$. We expand the language of PA by introducing, for each $k \ge 1$, a *Ramsey quantifier* \mathbb{Q}^k which binds k number variables.

In the standard model \mathbb{N} , the semantics for \mathbb{Q}^k is: $\mathbb{Q}^k x_1 \cdots x_k \Phi(x_1, \ldots, x_k)$ holds if and only if there exists an infinite set $X \subseteq \mathbb{N}$ such that $\Phi(a_1, \ldots, a_k)$ holds for all $a_1, \ldots, a_k \in X$ such that $a_1 < \cdots < a_k$.

Building on Magidor/Malitz 1977, Macintyre 1979 introduced an axiomatic theory PA(Q) consisting of PA plus some axioms for Ramsey quantifiers, and he proved a completeness theorem for PA(Q). However, his proof used a set-theoretical hypothesis which is independent of ZFC, namely Jensen's diamond.

Schmerl 1980 gave a better set of axioms and a better version of the theorem, and he eliminated the diamond hypothesis. These results were published in §2 of Schmerl/Simpson 1982.

Schmerl's axioms for PA(Q) with k = 2:

1. The axioms of PA, plus induction for all PA(Q)-formulas.

2. If $Qxy \Phi(x, y)$ and $\forall x \forall y (\Phi(x, y) \Rightarrow \Psi(x, y))$, then $Qxy \Psi(x, y)$.

3. If $Qxy \Phi(x, y)$, then $\exists z Qxy (z < x \land z < y \land \Phi(z, x) \land \Phi(z, y) \land \Phi(x, y)).$

4. If $\forall x \forall y ((x < y \land \Theta(x) \land \Theta(y)) \Rightarrow \Phi(x, y))$ and $\forall z \exists x (z < x \land \Theta(x))$, then $Qxy \Phi(x, y)$.

Let $S \supseteq PA(Q)$ be a set of sentences in the language of PA(Q). A strong model of S is a model M of PA which satisfies S if we interpret $M \models Qxy \Phi(x, y)$ as $(\exists \text{ unbounded } X \subseteq M) (\forall x, y \in X) (x < y \Rightarrow \Phi(x, y)).$

Completeness/Compactness Theorem (Schmerl): S is consistent if and only if, for all uncountable regular cardinals κ , S has a κ -like strong model. In his 1979 paper, Macintyre discusses a famous theorem of Paris and Harrington. Namely, a certain slightly modified version of the <u>finite</u> Ramsey Theorem is not provable in PA, a.k.a. <u>first-order arithmetic</u>. The Paris/Harrington theorem had important foundational implications, because it was the first transparent example of a finite combinatorial statement which is not provable in PA. And a little later, other authors produced similar finite combinatorial statements which are not provable in some of the best-known <u>subsystems of second-order arithmetic</u> which are <u>much stronger than PA</u>.

This situation was the motivation for Macintyre's study of PA(Q), which is also <u>much stronger</u> than PA. It had become desirable to compare PA(Q) with <u>subsystems of second-order arithmetic</u>, from the perspective of finite combinatorial theorems.

In §3 of Schmerl/Simpson 1982, we solved this problem by presenting the following theorem: A sentence in the language of PA is provable in PA(Q) if and only if it is provable in Π_1^1 -CA₀.

This system Π_1^1 -CA₀ is now well-known as one of the "Big Five" subsystems of second-order arithmetic, studied in Chapters 2 through 6 of my 1999 book. These five systems are recognized as being important because they play a key role in <u>reverse mathematics</u>. Other relevant references:

Menachem Magidor and Jerome I. Malitz, *Compact* extensions of L(Q), Annals of Mathematical Logic, 16, 217–261, 1977.

Model-Theoretic Logics, edited by J. Barwise and S. Feferman, Perspectives in Mathematical Logic, Springer, XVIII + 893 pages, 1985.

James H. Schmerl, *Peano arithmetic and hyper-Ramsey logic*, Transactions of the American Mathematical Society, 296, 2, 481–505, 1986.

Stephen G. Simpson, *Subsystems of Second Order Arithmetic*, Perspectives in Mathematical Logic, Springer, XIV + 445 pages, 1999; 2nd edition, Association for Symbolic Logic, Cambridge University Press, XVI + 444 pages, 2009.

Thank you for your attention!