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Summery

In this talk, we

introduce a sequence of theories T0, T1, T2, . . . such that

T0 < T1 < T2 · · · and

ACA0 +
∪

n Tn = {σ ∈ Π1
2 : Π1

1-CA0 ⊢ σ},
where

T < S and T = S mean Thm(T ) ⊊ Thm(S) and

Thm(T ) = Thm(S) respectively,

compare this sequence and a weaker variant of Σ0
n

Ramsey’s theorem or (Σ0
1)n determinacy.
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Motivation

There is a very large gap between ATR0 and Π1
1-CA0 :

Fact

Any consistent Π1
2 extension of ATR0 does not prove Π1

1-CA0.

There are some theorems such that

that are represented by a Π1
2 sentence, but

there are only a few results on the Π1
2 upper bound for

them.

Menger’s theorem in graph theory, Nash-Williams’ theorem

in bqo theory and Kruskal’s theorem for trees...

Question : What is the structure of {σ ∈ Π1
2 : Π

1
1-CA0 ⊢ σ}?

4 / 34



Introduction Beta reflections Leftmost path principle Ramsey’s theorem Determinacy Summery

1 Introduction

2 Beta reflections

3 Leftmost path principle

4 Ramsey’s theorem

5 Determinacy

6 Summery

5 / 34



Introduction Beta reflections Leftmost path principle Ramsey’s theorem Determinacy Summery

In this section, we introduce an increasing sequence of theories

⟨Ti⟩i slicing {σ ∈ Π1
2 : Π

1
1-CA0 ⊢ σ}.
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Definition

Let X be a set. The hyperjump HJ(X) of X is the set of

all indices of X-computable well-ordering.

Fact

Any Π1,X
1 set is many-one reducible to HJ(X).

Definition

Π1
1-CA0 is ACA0 plus ∀X∃Y (Y = HJ(X)).
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Π1
1-CA0 is ACA0 plus ∀X∃Y (Y = HJ(X)).

Observation

Π1
1-CA0 = ACA0+∀X∃Y (Y = HJ(X))

= ACA0+∀X∃Y (Y = HJ2(X))

= ACA0+∀X∃Y (Y = HJ3(X))

= · · ·

Here, HJ1(X) = HJ(X) and HJn+1(X) = HJ(HJn(X)).

Theorems provable from Π1
1-CA0 should be classified into

HJ-level,HJ2-level,HJ3-level,. . .
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Theorem

Let θ(X,Y, Z) be Σ1
0 such that

Π1
1-CA0 ⊢ ∀X∃Y ∀Zθ(X,Y, Z).

Then, there exists n ∈ ω such that

ACA0 ⊢ ∀X,W (W = HJn(X) → ∃Y ≤T W∀Zθ(X,Y, Z)))

[Proof] Rewrite Montalban and Shore’s work in [MoS] carefully.

Corollary (classification according to HJn-level)

For any Π1
2 sentence σ such that Π1

1-CA0 ⊢ σ, there exists

the smallest nσ satisfying the above condition.
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The statement ∀X∃Y (Y = HJn(X)) is Π1
3.

We mainly focus on Π1
2 statements.

We would like to introduce a nice Π1
2 variant of

∀X∃Y (Y = HJn(X)).

→ We use coded ω-models.

Coded ω-model: A structure of second-order arithmetic

its first order part is N (the same as the ground model)

its second order part is coded by a set.
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Let M = ⟨Mi⟩i be a coded ω-model. Then, for any sentence σ

with parameters from M, the condition

M |= σ

is a Σ1
1 condition.

Therefore, a formula of the form

∀X∃M: coded ω-model(X ∈ M |= σ)

is Π1
2.

11 / 34



Introduction Beta reflections Leftmost path principle Ramsey’s theorem Determinacy Summery

β10RFN(n)

∀X∃M: coded ω-model

(X ∈ M |= ACA0+∃Y (Y = HJn(X))).

Each β10RFN(n) is a Π1
2 sentence.

Each β10RFN(n) is provable from Π1
1-CA0.

Over ACA0, β
1
0RFN(0) < β1

0RFN(1) < β1
0RFN(2) < · · · .

Each σ ∈ Π1
2 such that Π1

1-CA0 ⊢ σ is provable from

ACA0+β
1
0RFN(n) for some n.

The theories ACA0+β
1
0RFN(0),ACA0+β

1
0RFN(1), . . . slice

the set {σ ∈ Π1
2 : Π

1
1-CA0 ⊢ σ}.
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The name β10RFN comes from the notion of β-models :

Definition

Let M be a coded ω-model. We say M is a β-model if it is Σ1
1

absolute in the sense that for any Σ1
1 formula θ(X⃗)

∀A⃗ ∈ M(θ(A⃗) ↔ M |= θ(A⃗))

Remark :

Coded ω-models are Σ1
0 absolute.

[M |= θ(A⃗)] → θ(A⃗) is trivial.
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Fact

Over ACA0, for any X, TFAE.

HJ(X) exists.

A coded β-model M such that X ∈ M exists.

Therefore, β10RFN(n) is equivalent to

∀X∃M0, . . . ,Mn : coded ω-models(X ∈ M0 ∈β · · · ∈β Mn |= ACA0).

Here Mi ∈β Mi+1 means that Mi ∈ Mi+1 and Mi and Mi+1

are Σ1
1 absolute.

Remark

The superscript 1 is from [Mi and Mi+1 are Σ1
1 absolute].

The subscript 0 is from [Mn and the ground model are Σ1
0

absolute].
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In this section, we compare the β10RFN-hierarchy and Menger’s

theorem, Nash-Williams’ theorem and Kruskal’s theorem.
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Menger’s theorem, Nash-Williams’ theorem and Kruskal’s

theorem are Π1
2 statements provable from Π1

1-CA0.

H. Towsner gave a Π1
2 upper bound.

He used a variant of leftmost path principle.

Leftmost Path Principle

TFAE over ACA0:

Π1
1-CA0,

any ill-founded tree T ⊆ N<N has a leftmost path

(w.r.t. the lexicographical order).

Towsner introduced a restricted leftmost-ness.
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Let T be a tree, f ∈ [T ] and α be a well-order.

The path f is a ∆0
α-leftmost path if

∀g ∈ [T ](g ≤T f
(α) → f ≤l g).

The path f is leftmost in [T ] ∩∆0,f
α .

∆0
αLPP: any ill-founded tree has a ∆0

α-leftmost path.

TLPP: ∀α(WO(α) → ∆0
αLPP).

Theorem (Towsner)

ATR0 ≤ ∆0
0LPP < TLPP and

MT and NWT are provable from TLPP,

KT is provable from ∆0
2LPP.

18 / 34



Introduction Beta reflections Leftmost path principle Ramsey’s theorem Determinacy Summery

How strong are ∆0
2LPP and TLPP in {σ ∈ Π1

2 : Π
1
1-CA0 ⊢ σ}?

Theorem

Over ACA0,

ATR0 < ∆0
2LPP < β1

0RFN(1) = ALPP < TLPP < β1
0RFN(2).

Here, ALPP is a variant of TLPP.
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Some fragments of Galvin-Prikry’s theorem

(Σ0
2Ram,Σ

0
3Ram . . .) are equivalent to Π1

1-CA0.

The hierarchy of Σ0
nRam collapses in reverse math.

From the viewpoint of computability, Σ0
2Ram,Σ

0
3Ram . . .

should be separated.

Comparing β10RFN-hierarchy and Σ0
nRam-hierarchy, we can

say the latter is strict in a sense.
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Definitions :

[X]N: the set of infinite subsets of X.

A ⊆ [N]N has the Ramsey property if there exists a set

H ∈ [N]N such that

[H]N ⊆ A ∨ [H]N ∩ A = ∅.

Fact

Over ACA0, TFAE.

Π1
1-CA0.

Any Σ0
2 definable class has the Ramsey property

(Σ0
2Ram).

Any Σ1
0 definable class has the Ramsey property

(Σ1
0Ram).
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Definition (arithmetical reduction)

Let X,Y be sets. We write X ≤a
T Y if ∃n(X ≤T Y

(n)).

We say A has the relative Ramsey property if there exists

H ∈ [N]N such that

([H]N ∩ {G : G ≤a
T H}) ⊆ A∨

([H]N ∩ {G : G ≤a
T H}) ∩ A = ∅.

Definition (rel(Σi
jRam))

Any Σi
j definable class has the relative Ramsey property.
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Theorem

Over ACA0,

β10RFN(n) proves rel(Σ
0
nRam) for n > 0.

rel(Σ0
2nRam) proves βRFN(n) for n > 0.

Although the Σ0
nRam hierarchy collapses, the rel(Σ0

nRam)

hierarchy does not.

Remark

This result reflects a computability theoretic intuition that

[a homogeneous set for (Σ0
nRam) is computable from the

n-th hyperjump].
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Remark

The last result probably be improved as follows: Over

ACA0,

β10RFN(n) ↔ rel(Σ0
n).

(Cf. A. Marcone and G. Marco, “The Galvin-Prikry theorem in

the Weihrauch lattice”, to appear.)

25 / 34



Introduction Beta reflections Leftmost path principle Ramsey’s theorem Determinacy Summery

1 Introduction

2 Beta reflections

3 Leftmost path principle

4 Ramsey’s theorem

5 Determinacy

6 Summery

26 / 34



Introduction Beta reflections Leftmost path principle Ramsey’s theorem Determinacy Summery

In this section, we compare a restricted variant of the

determinacy for Gale-Stewart game and β10RFN-hierarchy
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Let A ⊆ NN. Consider the following two players game GA:

1 Let n = 0.

2 Player 0 plays x2n ∈ N.
3 Player 1 plays x2n+1 ∈ N.
4 Increment n and return to step 2.

5 After ω-steps this game yields a sequence (xi)i ∈ NN.

Player 0 wins GA iff (xi)i ∈ A.
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Definitions :

A function S : N<N → N is called a strategy.

For strategies S, S′, a sequence (xi)i is the play along S, S′

((xi)i = S ⊗ S′) if

x2i = S(x0, . . . , x2i−1) and x2i+1 = S′(x0, . . . , x2i).

A strategy S is a winning strategy for 0 in GA if for any

strategy S′, S ⊗ S′ ∈ A.

A strategy S′ is a winning stratgy for 1 in GA if for any

strategy S, S ⊗ S′ ̸∈ A.

A is determined if GA has a winning strategy.
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Γ-Det

Any class A ⊆ NN defined by a φ ∈ Γ is determined.

Fact

Over ACA0, TFAE.

Π1
1-CA0.

(Σ0
1)2-Det.

(Σ0
1)n-Det for n > 2.

Here, (Σ0
1)n is the class defined by

(Σ0
1)1 is just Σ0

1.

(Σ0
1)n+1 is of the form φ ∧ (¬ψ) where φ is Σ0

1 and ψ is

(Σ0
1)n.
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Let A ⊆ NN.

A strategy S is a relative-winning strategy for player 0 if

∀S′ ≤a
T S(S ⊗ S′ ∈ A).

A strategy S′ is a relative-winning strategy for player 1 if

∀S ≤a
T S

′(S ⊗ S′ ̸∈ A).

A is pseudo-determined if the game GA has a

pseudo-winning strategy.

rel((Σ0
1)n-Det)

Any (Σ0
1)n definable class is pseudo-determined.

31 / 34



Introduction Beta reflections Leftmost path principle Ramsey’s theorem Determinacy Summery

Theorem

Over ACA0,

β10RFN(1) < rel((Σ0
1)2Det) < β1

0RFN(2).

rel((Σ0
1)n-Det) ≤ β10RFN(n).

β10RFN(n) < rel((Σ0
1)p(n)-Det).

Here, p(n) is a certain elementary function.

Question

Is β10RFN(n) provable from rel((Σ0
1)n+1Det) over ACA0?
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The Π1
2 consequences of Π1

1-CA0 is covered by the

hierarchy β10RFN(0) < β1
0RFN(1) < β1

0RFN(2) < · · · .
Some existing Π1

2 consequences (MT, NWT and KT) are

bounded by β10RFN(2).

The hierarchy of the relative Ramsey’s

theorem/determinacy also cover {σ ∈ Π1
2 : Π

1
1-CA0 ⊢ σ}.
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