Introduction 000 eta reflections 000000000

Leftmost path principle

Ramsey's theorem

Determinacy 000000 Summery 000

On the Π_2^1 consequences of Π_1^1 -CA₀

Yudai Suzuki (Joint work with Keita Yokoyama)

MOPA

April 18 (in NY), April 19 (in Japan), 2024

- 2 Beta reflections
- 3 Leftmost path principle
- 4 Ramsey's theorem
- 5 Determinacy

 Introduction
 Beta reflections
 Leftmost path principle
 Ramsey's theorem
 Determinacy
 Summery

 ○●○
 ○○○○○
 ○○○○○
 ○○○○○
 ○○○○○
 ○○○○○
 ○○○○○

Summery

In this talk, we

• introduce a sequence of theories T_0, T_1, T_2, \ldots such that

$$\begin{split} T_0 < T_1 < T_2 \cdots \text{ and} \\ \mathsf{ACA}_0 + \bigcup_n T_n &= \{ \sigma \in \Pi_2^1 : \Pi_1^1 \text{-} \mathsf{CA}_0 \vdash \sigma \}, \end{split}$$

where

- T < S and T = S mean $\text{Thm}(T) \subsetneq \text{Thm}(S)$ and Thm(T) = Thm(S) respectively,
- compare this sequence and a weaker variant of Σ_n^0 Ramsey's theorem or $(\Sigma_1^0)_n$ determinacy.

Introduction Beta r 00● 00000

a reflections Le

Leftmost path princi 00000 Ramsey's theorem

Determinacy 000000 Summery 000

Motivation

There is a very large gap between ATR_0 and $\Pi^1_1\text{-}\mathsf{CA}_0$:

There are some theorems such that

- that are represented by a Π_2^1 sentence, but
- there are only a few results on the Π^1_2 upper bound for them.

Menger's theorem in graph theory, Nash-Williams' theorem in bqo theory and Kruskal's theorem for trees...

Question : What is the structure of $\{\sigma \in \Pi_2^1 : \Pi_1^1 - \mathsf{CA}_0 \vdash \sigma\}$?

- 2 Beta reflections
- 3 Leftmost path principle
- 4 Ramsey's theorem
- 5 Determinacy

Beta reflections $000000000000000000000000000000000000$	Leftmost path principle 00000	Determinacy 000000	Summery 000

In this section, we introduce an increasing sequence of theories $\langle T_i \rangle_i$ slicing $\{ \sigma \in \Pi_2^1 : \Pi_1^1 \text{-} \mathsf{CA}_0 \vdash \sigma \}.$

Definition

Let X be a set. The hyperjump HJ(X) of X is the set of all indices of X-computable well-ordering.

Fact

Any $\Pi_1^{1,X}$ set is many-one reducible to HJ(X).

Definition

 $\Pi_1^1 \text{-} \mathsf{CA}_0 \text{ is } \mathsf{ACA}_0 \text{ plus } \forall X \exists Y(Y = \mathsf{HJ}(X)).$

Introductio 000 Beta reflections

Leftmost path princip 00000 Ramsey's theorem

Determinacy 000000 Summery 000

$\Pi_1^1 \text{-} \mathsf{CA}_0 \text{ is } \mathsf{ACA}_0 \text{ plus } \forall X \exists Y(Y = \mathsf{HJ}(X)).$

Observation

$$\Pi_1^{1-} \mathsf{CA}_0 = \mathsf{ACA}_0 + \forall X \exists Y (Y = \mathsf{HJ}(X))$$

= $\mathsf{ACA}_0 + \forall X \exists Y (Y = \mathsf{HJ}^2(X))$
= $\mathsf{ACA}_0 + \forall X \exists Y (Y = \mathsf{HJ}^3(X))$
= \cdots

Here, $HJ^1(X) = HJ(X)$ and $HJ^{n+1}(X) = HJ(HJ^n(X))$.

Theorems provable from $\Pi_1^1\text{-}\mathsf{C}\mathsf{A}_0$ should be classified into $\mathsf{HJ}\text{-}\mathsf{level},\mathsf{HJ}^2\text{-}\mathsf{level},\mathsf{HJ}^3\text{-}\mathsf{level},\ldots$

```
Introduction
000
```

Leftmost path princip 00000

Ramsey's theorem

Determinacy 000000 Summery 000

Theorem

Let $\theta(X, Y, Z)$ be Σ_0^1 such that

```
\Pi_1^1 \text{-} \mathsf{CA}_0 \vdash \forall X \exists Y \forall Z \theta(X, Y, Z).
```

Then, there exists $n \in \omega$ such that

 $\mathsf{ACA}_0 \vdash \forall X, W(W = \mathsf{HJ}^n(X) \to \exists Y \leq_{\mathrm{T}} W \forall Z \theta(X, Y, Z)))$

[Proof] Rewrite Montalban and Shore's work in [MoS] carefully.

Corollary (classification according to HJ^n -level)

For any Π_2^1 sentence σ such that $\Pi_1^1 \text{-} \mathsf{CA}_0 \vdash \sigma$, there exists the smallest n_σ satisfying the above condition.

Introduction 000	Beta reflections $000000000000000000000000000000000000$	Leftmost path principle 00000	Ramsey's theorem	Determinacy 000000	Summery 000

- The statement $\forall X \exists Y(Y = \mathsf{HJ}^n(X))$ is Π^1_3 .
- We mainly focus on Π_2^1 statements.
- We would like to introduce a nice Π_2^1 variant of $\forall X \exists Y (Y = \mathsf{HJ}^n(X)).$
 - $\rightarrow~$ We use coded $\omega\text{-models.}$

Coded ω -model: A structure of second-order arithmetic

- its first order part is \mathbb{N} (the same as the ground model)
- its second order part is coded by a set.

Let $\mathcal{M} = \langle \mathcal{M}_i \rangle_i$ be a coded ω -model. Then, for any sentence σ with parameters from \mathcal{M} , the condition

$$\mathcal{M} \models \sigma$$

is a Σ_1^1 condition. Therefore, a formula of the form

 $\forall X \exists \mathcal{M}: \text{ coded } \omega \text{-model}(X \in \mathcal{M} \models \sigma)$

is Π_2^1 .

Introduction	\mathbf{Beta}
	0000

Leftmost path princip 00000 Ramsey's theorem

Determinacy 000000 Summery 000

$\beta_0^1 \mathsf{RFN}(n)$

 $\forall X \exists \mathcal{M}: \text{ coded } \omega \text{-model}$

 $(X \in \mathcal{M} \models \mathsf{ACA}_0 + \exists Y(Y = \mathsf{HJ}^n(X))).$

- Each $\beta_0^1 \mathsf{RFN}(n)$ is a Π_2^1 sentence.
- Each $\beta_0^1 \mathsf{RFN}(n)$ is provable from $\Pi_1^1 \mathsf{CA}_0$.
- Over ACA₀, $\beta_0^1 \mathsf{RFN}(0) < \beta_0^1 \mathsf{RFN}(1) < \beta_0^1 \mathsf{RFN}(2) < \cdots$.
- Each $\sigma \in \Pi_2^1$ such that $\Pi_1^1 \mathsf{CA}_0 \vdash \sigma$ is provable from $\mathsf{ACA}_0 + \beta_0^1 \mathsf{RFN}(n)$ for some n.

The theories $ACA_0 + \beta_0^1 RFN(0)$, $ACA_0 + \beta_0^1 RFN(1)$,... slice the set $\{\sigma \in \Pi_2^1 : \Pi_1^1 - CA_0 \vdash \sigma\}$.

Introduction 000	Beta reflections $000000000000000000000000000000000000$	Leftmost path principle 00000	Ramsey's theorem	Determinacy 000000	Summery 000

The name $\beta_0^1 \mathsf{RFN}$ comes from the notion of β -models :

Definition

Let \mathcal{M} be a coded ω -model. We say \mathcal{M} is a β -model if it is Σ_1^1 absolute in the sense that for any Σ_1^1 formula $\theta(\vec{X})$

$$\forall \vec{A} \in \mathcal{M}(\theta(\vec{A}) \leftrightarrow \mathcal{M} \models \theta(\vec{A}))$$

Remark :

- Coded ω -models are Σ_0^1 absolute.
- $[\mathcal{M} \models \theta(\vec{A})] \rightarrow \theta(\vec{A})$ is trivial.

Fact

Over ACA_0 , for any X, TFAE.

- HJ(X) exists.
- A coded β -model \mathcal{M} such that $X \in \mathcal{M}$ exists.

Therefore, $\beta_0^1 \mathsf{RFN}(n)$ is equivalent to

 $\forall X \exists \mathcal{M}_0, \dots, \mathcal{M}_n : \text{coded } \omega \text{-models}(X \in \mathcal{M}_0 \in_\beta \dots \in_\beta \mathcal{M}_n \models \mathsf{ACA}_0).$

Here $\mathcal{M}_i \in_{\beta} \mathcal{M}_{i+1}$ means that $\mathcal{M}_i \in \mathcal{M}_{i+1}$ and \mathcal{M}_i and \mathcal{M}_{i+1} are Σ_1^1 absolute.

Remark

- The superscript 1 is from $[\mathcal{M}_i \text{ and } \mathcal{M}_{i+1} \text{ are } \Sigma_1^1 \text{ absolute}].$
- The subscript 0 is from $[\mathcal{M}_n \text{ and the ground model are } \Sigma_0^1]$ absolute].

Introduction 000	Beta reflections 0000000000	Leftmost path principle $\bullet 0000$	Ramsey's theorem	Determinacy 000000

1 Introduction

- 2 Beta reflections
- 3 Leftmost path principle
- 4 Ramsey's theorem

5 Determinacy

6 Summery

Introduction 000	Beta reflections 0000000000	Leftmost path principle $0 \bullet 000$	Ramsey's theorem	Summery 000

In this section, we compare the $\beta_0^1 \mathsf{RFN}$ -hierarchy and Menger's theorem, Nash-Williams' theorem and Kruskal's theorem.

 $\begin{array}{ccc} \mathrm{Introduction} & \mathrm{Beta\ reflections} & \mathrm{Leftmost} \\ \mathrm{ooo} & \mathrm{ooooooooo} & \mathrm{oooooo} \end{array}$

Leftmost path principle 00000

Ramsey's theore

Determinacy 000000

Summery 000

- Menger's theorem, Nash-Williams' theorem and Kruskal's theorem are Π_2^1 statements provable from Π_1^1 CA₀.
- H. Towsner gave a Π^1_2 upper bound.
- He used a variant of leftmost path principle.

Leftmost Path Principle

```
TFAE over ACA_0:
```

- $\Pi_1^1 CA_0$,
- any ill-founded tree $T \subseteq \mathbb{N}^{<\mathbb{N}}$ has a leftmost path (w.r.t. the lexicographical order).

Towsner introduced a restricted *leftmost-ness*.

Introduction Beta 000 000 Leftmost path principle 00000

Ramsey's theorem

Determinacy 000000

Summery 000

Let T be a tree, $f \in [T]$ and α be a well-order.

The path f is a Δ^0_{α} -leftmost path if

$$\forall g \in [T] (g \leq_T f^{(\alpha)} \to f \leq_l g).$$

The path f is leftmost in $[T] \cap \Delta^{0,f}_{\alpha}$.

- Δ^0_{α} LPP: any ill-founded tree has a Δ^0_{α} -leftmost path.
- TLPP: $\forall \alpha(WO(\alpha) \rightarrow \Delta^0_{\alpha} LPP).$

Theorem (Towsner)

- $\mathsf{ATR}_0 \leq \Delta_0^0 \mathsf{LPP} < \mathsf{TLPP}$ and
- MT and NWT are provable from TLPP,
- KT is provable from $\Delta_2^0 LPP$.

Beta reflections 0000000000	Leftmost path principle 0000Φ	Ramsey's theorem	Determinacy 000000	Summery 000

How strong are $\Delta_2^0 \mathsf{LPP}$ and TLPP in $\{\sigma \in \Pi_2^1 : \Pi_1^1 - \mathsf{CA}_0 \vdash \sigma\}$?

Theorem

Over ACA_0 ,

 $\mathsf{ATR}_0 < \Delta_2^0 \mathsf{LPP} < \beta_0^1 \mathsf{RFN}(1) = \mathsf{ALPP} < \mathsf{TLPP} < \beta_0^1 \mathsf{RFN}(2).$

Here, ALPP is a variant of TLPP.

Introduction 1 000 Ramsey's theorem ●00000

Determinacy 000000 Summery 000

1 Introduction

- 2 Beta reflections
- 3 Leftmost path principle
- 4 Ramsey's theorem
- 5 Determinacy

6 Summery

20/34

- Some fragments of Galvin-Prikry's theorem $(\Sigma_2^0 \mathsf{Ram}, \Sigma_3^0 \mathsf{Ram}...)$ are equivalent to Π_1^1 CA_0 .
 - The hierarchy of $\Sigma_n^0 \mathsf{Ram}$ collapses in reverse math.
- From the viewpoint of computability, $\Sigma_2^0 Ram, \Sigma_3^0 Ram...$ should be separated.
- Comparing $\beta_0^1 \mathsf{RFN}$ -hierarchy and $\Sigma_n^0 \mathsf{Ram}$ -hierarchy, we can say the latter is strict in a sense.

Introduction Beta reflections Leftmost path print 000 00000000 00000 Ramsey's theorem

Determinacy 000000 Summery 000

Definitions :

- $[X]^{\mathbb{N}}$: the set of infinite subsets of X.
- $\mathcal{A} \subseteq [\mathbb{N}]^{\mathbb{N}}$ has the Ramsey property if there exists a set $H \in [\mathbb{N}]^{\mathbb{N}}$ such that

$$[H]^{\mathbb{N}} \subseteq \mathcal{A} \vee [H]^{\mathbb{N}} \cap \mathcal{A} = \emptyset.$$

Fact

Over ACA_0 , TFAE.

- Π^1_1 CA₀.
- Any Σ_2^0 definable class has the Ramsey property $(\Sigma_2^0 \mathsf{Ram})$.
- Any Σ_0^1 definable class has the Ramsey property $(\Sigma_0^1 \mathsf{Ram})$.

Introduction Be 000 00 Leftmost path principl 00000 Ramsey's theorem 000000

Determinacy 000000 Summery 000

Definition (arithmetical reduction)

Let X, Y be sets. We write $X \leq_{\mathrm{T}}^{\mathrm{a}} Y$ if $\exists n(X \leq_{\mathrm{T}} Y^{(n)})$.

We say \mathcal{A} has the relative Ramsey property if there exists $H \in [\mathbb{N}]^{\mathbb{N}}$ such that

$$([H]^{\mathbb{N}} \cap \{G : G \leq_{\mathrm{T}}^{\mathrm{a}} H\}) \subseteq \mathcal{A} \lor$$
$$([H]^{\mathbb{N}} \cap \{G : G \leq_{\mathrm{T}}^{\mathrm{a}} H\}) \cap \mathcal{A} = \varnothing.$$

Definition $(\operatorname{rel}(\Sigma_i^i \mathsf{Ram}))$

Any Σ_{i}^{i} definable class has the relative Ramsey property.

Beta reflections 0000000000	Leftmost path principle 00000	Ramsey's theorem 0000€0	Summery 000

Theorem

Over ACA_0 ,

- $\beta_0^1 \mathsf{RFN}(n)$ proves $\operatorname{rel}(\Sigma_n^0 \mathsf{Ram})$ for n > 0.
- $\operatorname{rel}(\Sigma_{2n}^0\mathsf{Ram})$ proves $\beta\mathsf{RFN}(n)$ for n > 0.

Although the $\Sigma_n^0 \mathsf{Ram}$ hierarchy collapses, the $\operatorname{rel}(\Sigma_n^0 \mathsf{Ram})$ hierarchy does not.

Remark

This result reflects a computability theoretic intuition that [a homogeneous set for $(\Sigma_n^0 Ram)$ is computable from the *n*-th hyperjump].

Introduction 000	Beta reflections 0000000000	Leftmost path principle 00000	Ramsey's theorem 00000	Determinacy 000000	Summery 000

Remark

The last result probably be improved as follows: Over $\mathsf{ACA}_0,$

 $\beta_0^1 \mathsf{RFN}(n) \leftrightarrow \operatorname{rel}(\Sigma_n^0).$

(Cf. A. Marcone and G. Marco, "The Galvin-Prikry theorem in the Weihrauch lattice", to appear.)

1 Introduction

- 2 Beta reflections
- 3 Leftmost path principle
- 4 Ramsey's theorem
- **5** Determinacy

Introduction Beta reflections 000 000000000 Leftmost path principl 00000 Ramsey's theore

Determinacy 0●0000 Summery 000

In this section, we compare a restricted variant of the determinacy for Gale-Stewart game and $\beta_0^1 RFN$ -hierarchy

	Beta reflections 0000000000	Leftmost path principle 00000	Ramsey's theorem	Determinacy 00000	Summery 000

Let $\mathcal{A} \subseteq \mathbb{N}^{\mathbb{N}}$. Consider the following two players game $G_{\mathcal{A}}$:

- **1** Let n = 0.
- **2** Player 0 plays $x_{2n} \in \mathbb{N}$.
- **3** Player 1 plays $x_{2n+1} \in \mathbb{N}$.
- **(**) Increment n and return to step 2.
- After ω -steps this game yields a sequence $(x_i)_i \in \mathbb{N}^{\mathbb{N}}$.

Player 0 wins $G_{\mathcal{A}}$ iff $(x_i)_i \in \mathcal{A}$.

Definitions :

- A function $S: \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}$ is called a strategy.
- For strategies S, S', a sequence $(x_i)_i$ is the play along S, S' $((x_i)_i = S \otimes S')$ if

$$x_{2i} = S(x_0, \dots, x_{2i-1})$$
 and $x_{2i+1} = S'(x_0, \dots, x_{2i})$.

- A strategy S is a winning strategy for 0 in $G_{\mathcal{A}}$ if for any strategy $S', S \otimes \overline{S'} \in \mathcal{A}$.
- A strategy S' is a winning strategy for 1 in $G_{\mathcal{A}}$ if for any strategy $S, S \otimes \overline{S'} \notin \mathcal{A}$.
- $\underline{\mathcal{A}}$ is determined if $G_{\mathcal{A}}$ has a winning strategy.

Introduction 000	Beta reflections 0000000000	Leftmost path principle 00000	Ramsey's theorem	Determinacy oooo●o	$_{ m ooo}^{ m Sum}$
	Det				
	-Det ny class <i>A</i> ⊆	$\mathbb{N}^{\mathbb{N}}$ defined by a \mathcal{G}	$o \in \Gamma$ is determ	nined.	
Fa	act				
0	ver ACA_0 , T	FAE.			
	• Π ₁ ¹ - CA ₀ .				
	• $(\Sigma_1^0)_2$ -Det				
	• $(\Sigma_1^0)_n$ -Det	for $n > 2$.			
,	$(\Sigma_1^0)_n$ is the	class defined by			

- $(\Sigma_1^0)_1$ is just Σ_1^0 .
- $(\Sigma_1^0)_{n+1}$ is of the form $\varphi \wedge (\neg \psi)$ where φ is Σ_1^0 and ψ is $(\Sigma_1^0)_n$.

Let $\mathcal{A} \subseteq \mathbb{N}^{\mathbb{N}}$.

- A strategy S is a relative-winning strategy for player 0 if $\forall S' \leq^{\mathbf{a}}_{\mathrm{T}} S(S \otimes S' \in \mathcal{A}).$
- A strategy S' is a relative-winning strategy for player 1 if $\forall S \leq_{\mathrm{T}}^{\mathrm{a}} S'(S \otimes S' \notin \mathcal{A}).$
- \mathcal{A} is <u>pseudo-determined</u> if the game $G_{\mathcal{A}}$ has a pseudo-winning strategy.

```
\operatorname{rel}((\Sigma_1^0)_n\operatorname{-Det})
```

Any $(\Sigma_1^0)_n$ definable class is pseudo-determined.

Introduction Beta reflections Leftmost path principle 000 000000000 00000	Ramsey's theorem	Determina 000000
--	------------------	---------------------

Theorem

Over ACA_0 ,

- $\bullet \ \beta_0^1 \mathsf{RFN}(1) < \operatorname{rel}((\Sigma_1^0)_2 \mathsf{Det}) < \beta_0^1 \mathsf{RFN}(2).$
- $\operatorname{rel}((\Sigma_1^0)_n\operatorname{-Det}) \leq \beta_0^1 \operatorname{RFN}(n).$
- $\bullet \ \beta_0^1 \mathsf{RFN}(n) < \operatorname{rel}((\Sigma_1^0)_{p(n)} \text{-}\mathsf{Det}).$

Here, p(n) is a certain elementary function.

Question

Is $\beta_0^1 \mathsf{RFN}(n)$ provable from $\operatorname{rel}((\Sigma_1^0)_{n+1}\mathsf{Det})$ over ACA_0 ?

acv

Introduction 000

1 Introduction

- 2 Beta reflections
- 3 Leftmost path principle
- 4 Ramsey's theorem
- 5 Determinacy

- The Π_2^1 consequences of Π_1^1 CA_0 is covered by the hierarchy $\beta_0^1 \mathsf{RFN}(0) < \beta_0^1 \mathsf{RFN}(1) < \beta_0^1 \mathsf{RFN}(2) < \cdots$.
- Some existing Π_2^1 consequences (MT, NWT and KT) are bounded by $\beta_0^1 \mathsf{RFN}(2)$.
- The hierarchy of the relative Ramsey's theorem/determinacy also cover $\{\sigma \in \Pi_2^1 : \Pi_1^1 \mathsf{CA}_0 \vdash \sigma\}$.

Introduction 000 Ramsey's theore 000000

Determinacy 000000 Summery 00●

References

PaY Pacheco, Leonardo, and Keita Yokoyama. "Determinacy and reflection principles in second-order arithmetic." arXiv preprint arXiv:2209.04082 (2022).

- MoS Montalbán, Antonio, and Richard A. Shore. "Conservativity of ultrafilters over subsystems of second order arithmetic." The Journal of Symbolic Logic 83.2 (2018): 740-765.
- Tow Towsner, Henry. "Partial impredicativity in reverse mathematics." The Journal of Symbolic Logic 78.2 (2013): 459-488.