Strong guessing models

Boban Velickovic

IMJ-PRG Université de Paris

CUNY Set Theory Seminar
New York, June 19 2020
Background and motivation

This is joint work with my PhD student R. Mohammadmour.

General form of forcing axioms. Let \mathcal{K} be a class of forcing notions and κ an uncountable cardinal.

\[
\text{FA}_{\kappa}(\mathcal{K})
\]

For every $\mathcal{P} \in \mathcal{K}$ and a family \mathcal{D} of κ dense subsets of \mathcal{P} there is a filter G in \mathcal{P} such that $G \cap D \neq \emptyset$, for all $D \in \mathcal{D}$.

- MA$_{\kappa} \equiv$ FA$_{\kappa}(\text{ccc})$
- PFA \equiv FA$_{\aleph_1}(\text{proper})$
- MM \equiv FA$_{\aleph_1}(\text{stationary preserving})$

Remark

\mathcal{K} cannot be the class of all posets or even all posets preserving \aleph_1.
PFA implies

- $2^{\aleph_0} = 2^{\aleph_1} = \aleph_2$
- Singular Cardinal Hypothesis
- The tree property at \aleph_2
- the failure of $\Box(\kappa)$, for regular $\kappa > \aleph_1$.

MM implies

- NS_{ω_1} is \aleph_2-saturated
- Chang’s conjecture $(\aleph_2, \aleph_1) \rightarrow (\aleph_1, \aleph_0)$

We are looking for higher forcing axioms that have similar structural consequences. In particular we want to have $2^{\aleph_0} > \aleph_2$.
Guessing models

We first search for some principles that follow from PFA, imply most of its structural properties, but are consistent with 2^{\aleph_0} being bigger than ω_2. The key notion is that of a **guessing model**.

Definition (Viale)

Let R be a model of a fragment of set theory and $M \prec R$. Let γ be a cardinal. Let $Z \in M$ and $f : Z \to 2$ be a function.

1. f is **γ-approximated** in M if $f \upharpoonright C \in M$, for all $C \in \mathcal{P}_\gamma(Z) \cap M$.
2. f is **guessed** in M if there is $\bar{f} \in M$ such that $f \upharpoonright M = \bar{f} \upharpoonright M$.

We say that M is a **γ-guessing model** if every $f \in R$ which is γ-approximated in M is guessed in M.

Remark

$M \prec H_\theta$ is a γ-guessing model iff the transitive collapse \bar{M} of M has the γ-approximation property in the sense of Hamkins.
Write $\mathcal{P}_\kappa^*(R)$ for the set of all $M < R$ such that $M \cap \kappa \in \kappa$. For $\gamma \leq \kappa$ we let

$$\mathcal{G}_{\kappa,\gamma}(R) = \{M \in \mathcal{P}_\kappa^*(R) : M \text{ is } \gamma\text{-guessing}\}.$$

Definition (Viale)

$\text{GM}(\kappa, \gamma)$ is the statement that $\mathcal{G}_{\kappa,\gamma}(H_\theta)$ is stationary, for all sufficiently large θ.

We are primarily interested in $\gamma = \omega_1$ and $\kappa = \omega_2$, i.e. ω_1-guessing models of size ω_1.
Lemma (Viale)

1. If M is \aleph_0-guessing then $\kappa_M = M \cap \kappa$ and κ are inaccessible.
2. $M < V_\delta$ is \aleph_0-guessing iff $\bar{M} = V_{\bar{\delta}}$, for some $\bar{\delta}$, where \bar{M} is the transitive collapse of M.

The following is a reformulation of Magidor’s characterization of supercompactness in terms of \aleph_0-guessing models.

Theorem (Magidor)

κ is supercompact iff $GM(\kappa, \aleph_0)$ holds.

Remark

For this reason we use the term **Magidor models** for \aleph_0-guessing models.
Theorem (Viale, Weiss)

PFA implies $\text{GM}(\omega_2, \omega_1)$.

Theorem (Weiss)

$\text{GM}(\omega_2, \omega_1)$ implies

1. the failure of $\square(\lambda)$, for all regular $\lambda \geq \omega_2$.
2. $\text{TP}(\omega_2)$, in fact, $\text{TP}(\omega_2, \lambda)$, for $\lambda \geq \omega_2$.

Theorem (Viale, Krueger)

$\text{GM}(\omega_2, \omega_1)$ implies SCH.

Theorem (Cox, Krueger)

$\text{GM}(\omega_2, \omega_1)$ is consistent with 2^{\aleph_0} arbitrarily large.
Definition

Let $\theta > \omega_1$ be a regular cardinal. Let $N < H_\theta$ be of size \aleph_1.

- We say that N is **internally unbounded (I.U.)** if there is an \in-chain of countable models $(N_\xi : \xi < \omega_1)$ such that $N = \bigcup \xi N_\xi$.
- We say that N is **internally club (I.C.)** if the above sequence can be taken to be continuous.

Definition

Let $M < H_\theta$ be of size \aleph_1. We say that M is **locally internally unbounded** if $\mathcal{P}_{\omega_1}(X) \cap M$ is cofinal in $\mathcal{P}_{\omega_1}(X \cap M)$, for every $X \in M$.

Fact

Suppose $\theta_0 < \theta_1$ are regular and $M < H_{\theta_1}$ is locally internally unbounded with $\theta_0 \in M$. Then $M \cap H_{\theta_0}$ is internally unbounded.
Theorem (Krueger)

If $M < H_\theta$ is an ω_1-guessing model of size \aleph_1, then M is locally internally unbounded.

Proof.

Let $X \in M$ and $x \in \mathcal{P}_{\omega_1}(X \cap M)$. We need to find a countable $y \in M$ with $x \subseteq y$.

Let $f : \omega \to x$ be a bijection, and set $x_n = f^{[n]}n$, hence $x_n \subseteq x_{n+1}$.

Let $A = \{x_n : n \in \omega\}$. Then $A \subseteq [X]<\omega \in M$.

- If A is countably approximated in M, since M is an ω_1-guessing model, $A \in M$, and hence $x = \bigcup A \in M$. Set $y = x$.

- Otherwise there is a countable $Y \subseteq [X]<\omega$ in M such that $A \cap Y \notin M$, but then $A \cap Y$ is infinite, and $x = \bigcup(A \cap Y) \subseteq \bigcup Y \in M$. Set $y = \bigcup Y$.

\[
\square
\]
Definition (Viale)

Let \(\lambda \) be singular of cofinality \(\omega \). \(\mathcal{A} = (A(n, \alpha) : n < \omega, \alpha < \lambda^+) \) is a strong covering matrix for \(\lambda^+ \) if:

1. \(A(0, \alpha) \subseteq A(1, \alpha) \subseteq A(2, \alpha) \ldots \), for all \(\alpha \),
2. \(\bigcup_n A(n, \alpha) = \alpha \), for all \(\alpha \),
3. \(|A(n, \alpha)| < \lambda \), for all \(n \) and \(\alpha \),
4. for all \(\alpha < \beta \) there is \(n \) such that \(A(m, \alpha) \subseteq A(m, \beta) \), for all \(m \geq n \),
5. for all \(x \in \mathcal{P}_{\omega_1}(\lambda^+) \) there is \(\gamma x < \lambda^+ \) such that for all \(\alpha \geq \gamma x \) there is \(n \) such that \(A(m, \alpha) \cap x = A(m, \gamma x) \cap x \), for all \(m \geq n \).
Proposition

Assume $\lambda > 2^{\aleph_0}$ is of countable cofinality. Then there is a strong covering matrix \mathcal{A} for λ^+.

Proposition (Viale)

Assume for all $\lambda > 2^{\aleph_0}$ of countable cofinality and a strong covering matrix \mathcal{A} for λ^+, there is an unbounded set $B \subseteq \lambda^+$ such that $\mathcal{P}_{\omega_1}(B)$ is covered by \mathcal{A}. Then SCH holds.

Remark

$\mathcal{P}_{\omega_1}(B)$ is **covered** by \mathcal{A} if, for every $x \in \mathcal{P}_{\omega_1}(B)$, there are n, α such that $x \subseteq A(n, \alpha)$.
Lemma

Suppose $\text{cof}(\lambda) = \omega$ and \mathcal{A} is a strong covering matrix for λ^+. Let θ be sufficiently large regular cardinal. Let $M < H_\theta$ be an ω_1-guessing internally unbounded model of size \aleph_1. Let $\delta_M = \sup(M \cap \lambda^+)$. Then there is n such that $A(m, \delta_M) \cap x \in M$, for all $x \in P_{\omega_1}(\lambda^+) \cap M$ and $m \geq n$.

Proof.

Otherwise, for each n, pick $x_n \in P_{\omega_1}(\lambda^+) \cap M$ with $A(n, \delta_M) \cap x_n \notin M$. By internal unboundedness of M find countable $x \in M$ such that $\bigcup_n x_n \subseteq x$. By elementarity of M, $\gamma x \in M$. By definition of γx there is n_0 such that for all $n \geq n_0$

$$A(n, \delta_M) \cap x = A(n, \gamma x) \cap x \in M.$$

Given $n \geq n_0$ we have $A(n, \delta_M) \cap x = A(n, \gamma x) \cap x \in M$, and hence:

$$A(n, \delta_M) \cap x_n = A(n, \delta_M) \cap x \cap x_n \in M.$$

This is a contradiction.
Theorem (Viale, Krueger)

Assume $\text{GM}(\omega_2, \omega_1)$. Then SCH holds.

Proof.

Let $\lambda > 2^{\aleph_0}$ be of countable cofinality and let \mathcal{A} be a strong covering matrix for λ^+. We find an unbounded $B \subseteq \lambda^+$ such that $\mathcal{P}_{\omega_1}(B)$ is covered by \mathcal{A}.

Fix θ large enough and an I.U. ω_1-guessing model $M < H_\theta$ of size \aleph_1 with $\mathcal{A} \in M$. We may assume $\text{cof}(\delta_M) = \omega_1$. By previous lemma there is n_0 such that $A(m, \delta_M) \cap x \in M$, for all $x \in \mathcal{P}_{\omega_1}(\lambda^+) \cap M$, and all $m \geq n_0$.

Since M is an ω_1-guessing model we can find, for each $m \geq n_0$, $A_m \in M$ such that $A(m, \delta_M) \cap M = A_m \cap M$. Since $\text{cof}(\delta_M) = \omega_1$ we can find $m \geq n_0$ such that $A(m, \delta_M) \cap M$ is unbounded in δ_M, but since $A_m \in M$ and $A(m, \delta_M) \cap M = A_m \cap M$, it follows that A_m is unbounded in λ^+.

If $x \in \mathcal{P}_{\omega_1}(A_m) \cap M$ then x is covered by $A(m, \delta_M)$. By elementarity of M it follows that every $x \in \mathcal{P}_{\omega_1}(A_m)$ is covered by some member of \mathcal{A}. Hence, we can set $B = A_m$.
Guessing models are closely related to the approachability ideal $I[\lambda]$.

Definition

Let λ be a regular cardinal and $\bar{a} = (a_\xi : \xi < \lambda)$ a sequence of bounded subsets of λ. We let $B(\bar{a})$ denote the set of all $\delta < \lambda$ such that there is a cofinal $c \subseteq \delta$ such that:

1. $\text{otp}(c) < \delta$, in particular δ is singular,
2. for all $\gamma < \delta$, there is $\eta < \delta$ such that $c \cap \gamma = a_\eta$.

Definition (Shelah)

Suppose λ is regular. $I[\lambda]$ is the ideal generated by the sets $B(\bar{a})$, for sequences \bar{a} as above, and the non stationary ideal NS_λ.
This ideal was defined by Shelah in the late 1970s. \(I[\lambda] \) and its variations have been extensively studied over the past 40 years.

For regular \(\kappa < \lambda \) we let \(S^{\kappa}_\lambda = \{ \alpha < \lambda : \text{cof}(\alpha) = \kappa \} \).

Theorem (Shelah)

Suppose \(\lambda \) is a regular cardinal.

1. Then \(S^{<\lambda}_{\lambda^+} \in I[\lambda^+] \).
2. Suppose \(\kappa \) is regular and \(\kappa^+ < \lambda \). Then there is a stationary subset of \(S^{\kappa}_\lambda \) which belongs to \(I[\lambda] \).

The **approachability property** \(\text{AP}_{\kappa^+} \) states that \(\kappa^+ \in I[\kappa^+] \). For a regular cardinal \(\kappa \) the issue is to understand \(I[\kappa^+] \uparrow S^{\kappa}_{\kappa^+} \).
Approachability ideal

Proposition

Assume $GM(\kappa^+, \kappa)$. Then $\kappa^+ \notin I[\kappa^+]$.

Proof.

Let $\bar{a} = (a_\xi : \xi < \kappa^+)$ be a sequence of bounded subsets of κ^+.

Fix $M < H_{\kappa^+}$ a κ-guessing model of size κ with $\bar{a} \in M$.

Let $\delta = M \cap \kappa^+$. We claim that $\delta \notin B(\bar{a})$.

Suppose $\delta \in B(\bar{a})$, and let $c \subseteq \delta$ witness this. Thus $\mu = o.t.(c) < \delta$.

For $\gamma < \delta$ there is $\eta < \delta$ such that $c \cap \gamma = a_\eta \in M$.

So c is κ-approximated in M.

Since M is κ-guessing model, there is $c^* \in M$ with $c = c^* \cap M$.

Then c is an initial segment of c^*, and $c = c^*(\mu) \cap \kappa^+$, where $c^*(\mu)$ is the μ-th element of c^*.

It follows that $c \in M$, and hence also $\delta = \sup(c) \in M$, a contradiction!
Question (Shelah)
Can $I[\omega_2] \upharpoonright S^{\omega_1}_{\omega_2}$ consistently be the nonstationary ideal on $S^{\omega_1}_{\omega_2}$?

Theorem (Mitchell)
Suppose κ is κ^+-Mahlo. Then there is a generic extension in which $\kappa = \omega_2$ and $I[\omega_2] \upharpoonright S^{\omega_1}_{\omega_2}$ is the non stationary ideal on $S^{\omega_1}_{\omega_2}$.

Definition (Mitchell Property)
For λ regular, $MP(\lambda^+)$ denotes the statement that $I[\lambda^+] \upharpoonright S^{\lambda^+}_{\lambda^+}$ is the nonstationary ideal on $S^{\lambda^+}_{\lambda^+}$.

Remark
$MP(\omega_2)$ implies $2^{\kappa_0} \geq \kappa_3$.
Some questions

Some questions:

1. Does $\text{GM}(\omega_2, \omega_1)$ imply $\text{MP}(\omega_2)$?
2. What about $\text{GM}(\omega_3, \omega_2)$?
3. Does $\text{GM}(\omega_2, \omega_1)$ bound the continuum?

Some answers:

1. No! $\text{GM}(\omega_2, \omega_1)$ is consistent with $\mathfrak{c} = \aleph_2$. (Viale–Weiss)
2. $\text{GM}(\omega_3, \omega_2)$ is consistent with CH. (Trang)
3. $\text{GM}(\omega_2, \omega_1)$ is consistent with continuum large. (Cox–Krueger)
Strong guessing models

Idea: combine $\text{GM}(\omega_2, \omega_1)$, $\text{GM}(\omega_3, \omega_2)$ and $\text{MP}(\omega_2)$.

Definition

Let R be a model of a fragment of ZFC. We say that $M < R$ is a **strong ω_1-guessing model** if M can be written as the union of an increasing ω_1-continuous \in-chain $(M_\xi : \xi < \omega_2)$ of ω_1-guessing models of size ω_1.

Remark

Every strongly ω_1-guessing model is also an ω_1-guessing model.

$$\mathcal{G}^+_{\omega_3, \omega_1}(R) = \{ M \in [R]^{\omega_2} : M \text{ is a strong } \omega_1\text{-guessing model} \}.$$

Definition

$\text{GM}^+(\omega_3, \omega_1)$ states that $\mathcal{G}^+_{\omega_3, \omega_1}(H_\theta)$ is stationary, for all large enough θ.
Theorem

$\text{GM}^+ (\omega_3, \omega_1)$ implies the following:

1. $\text{GM}(\omega_3, \omega_2)$ and $\text{GM}(\omega_2, \omega_1)$.
2. $\text{MP}(\omega_2)$ and hence $2^{\aleph_0} \geq \aleph_3$.
3. there are no weak ω_1-Kurepa trees nor weak ω_2-Kurepa trees.
4. the tree property at ω_2 and ω_3.
5. the failure of $\square(\lambda)$, for all $\lambda \geq \omega_2$.

Theorem (Mohammadmour, V.)

Assume there are two supercompact cardinals. There there is a generic extension in which $\text{GM}^+ (\omega_3, \omega_1)$ holds.
Definition

Suppose \((T, <)\) a tree of size and height \(\aleph_1\). \(T\) is **weakly special** if there is a function \(\sigma : T \to \omega\) such that if \(\sigma(r) = \sigma(s) = \sigma(t)\) with \(r < s, t\), then \(s\) and \(t\) are comparable.

Proposition

If \(T\) is a tree of height and size \(\omega_1\) and is weakly special then \(T\) has at most \(\aleph_1\) many cofinal branches.

Proof.

Let \(f\) be a weak specializing map of \(T\). If \(b\) is a cofinal branch there is an integer \(n_b\) such that \(|f^{-1}(n_b) \cap b| = \aleph_1\). Let \(t_b\) be the least element of \(f^{-1}(n_b) \cap b\). Then the map \(b \mapsto t_b\) is injective from the set of cofinal branches to \(T\).
Let X be a set.

$$T_X = \{ (Z, f) : Z \in X \text{ is uncountable and } f : Z \cap X \to 2 \}.$$

Definition

Suppose that M is an ω_1-guessing model. Let $(M_\xi : \xi < \omega_1)$ be an IU-sequence. Let

$$T(M) = \bigcup_{\xi < \omega_1} (T_{M_\xi} \cap M).$$

Define the order \leq on $T(M)$ be letting $(Z, f) \leq (W, g)$ if and only if $Z = W$ and $f \subseteq g$.

Remark

Suppose that M is an ω_1-guessing model of size \aleph_1. Then $(T(M), \leq)$ is a tree of size and height ω_1 with at most \aleph_1 cofinal branches.

Definition

We say that M is a **special guessing model** if $T(M)$ is weakly special.
Proposition

If M is a special ω_1-guessing model of size ω_1 then M remains ω_1-guessing in any outer universe W of V with $\omega_1^W = \omega_1^V$.

Proof.

Suppose W is an outer universe with $\omega_1^W = \omega_1^V$. Let $X \in M$ and suppose $f : X \to 2$ with $f \in W$ is ω_1-approximated in M. Then f gives a branch through $T(M)$. But all the branches of $T(M)$ are in V, hence $f \in V$. Since M is ω_1-guessing model in V, it follows that $f \in M$. \qed
Definition (SGM(ω₂, ω₁))

SGM(ω₂, ω₁) denotes the statement that the set of special ω₁-guessing models of size ℵ₁ is stationary in [H₀]ℵ₁, for all sufficiently large regular θ.

Theorem (Cox-Krueger)

- SGM(ω₂, ω₁) is consistent with continuum arbitrary large, modulo the existence of a supercompact cardinal.

- Assume SGM(ω₂, ω₁). Then Souslin’s Hypothesis holds.

- Assume SGM(ω₂, ω₁) and 2ℵ₀ < ℵω₁. Then the principle AMP(ω₁) holds: every forcing that adds a new subset of ω₁ either adds a real or collapsing some cardinal below 2ℵ₀.
Definition

A model M of cardinality ω_2 is **special strongly ω_1-guessing** if it is the union of an ϵ-increasing chain $(M_\xi : \xi < \omega_2)$ which is continuous at cofinality ω_1 of special ω_1-guessing models of cardinality ω_1.

Definition (SGM$^+(\omega_3, \omega_1)$)

SGM$^+(\omega_3, \omega_1)$ states that the set of special strongly ω_1-guessing models is stationary in $[H_\theta]^{\omega_2}$, for all large enough regular θ.
Theorem (Mohammadpour, V.)

Assume there are two supercompact cardinals. There is a generic extension in which $\text{SGM}^+ (\omega_3, \omega_1)$ holds.

Theorem (Mohammadpour, V.)

Assume $\text{SGM}^+ (\omega_3, \omega_1)$, $2^{\aleph_0} < \aleph_{\omega_1}$ and $2^{\aleph_1} < \aleph_{\omega_2}$. Then $\text{AMP}(\omega_2)$ holds: every poset that adds a new subset of ω_2 either adds a real or collapses some cardinal.
$2^{\aleph_0} \geq \aleph_3$

$\neg \Box (\omega_2, \lambda)$
TP(\kappa_2)
SCH
MP(\omega_2)

AMP(\kappa_1)
SH
GM(\omega_2, \omega_1)
TP(\kappa_3)
FS(\omega_2, \omega_1)

AMP(\kappa_2)
SGM(\omega_2, \omega_1)
GM(\omega_2, \omega_1)
GM^+(\omega_3, \omega_1)
SFS(\omega_2, \omega_1)

SGM^+(\omega_3, \omega_1)
Thank You!