**February 7**

Victor Selivanov,
Institute of Informatics Systems, Novosibirsk

**A Q-Wadge hierarchy in quasi-Polish spaces**

The Wadge hierarchy was originally defined and studied only in the Baire space (and some other zero-dimensional spaces). We extend it to arbitrary topological spaces by providing a set-theoretic definition of all its levels. We show that our extension behaves well in second countable spaces and especially in quasi-Polish spaces. In particular, all levels are preserved by continuous open surjections between second countable spaces, which implies, e.g., several Hausdorff-Kuratowski-type theorems in quasi-Polish spaces. In fact, many results hold not only for the Wadge hierarchy of sets but also for its extension to Borel functions from a space to a countable better quasiorder Q.