**April 22**

**Jouko Väänänen**,
University of Helsinki

**Stationary logic and set theory**

Stationary logic was introduced in the 1970’s. It allows the quantifier 'for almost all countable subsets s…'. Although it is undoubtedly a kind of second order logic, it is completely axiomatizable, countably compact and satisfies a kind of Downward Lowenheim-Skolem theorem. In this talk I give first a general introduction to the extension of first order logic by this 'almost all'-quantifier. As 'almost all' is interpreted as 'for a club of', the theory of this logic is entangled with properties of stationary sets. I will give some examples of this. The main reason to focus on this logic in my talk is to use it to build an inner model of set theory. I will give a general introduction to this inner model, called C(aa), or the aa-model, and sketch a proof of CH in the model. My work on the aa-model is joint work with Juliette Kennedy and Menachem Magidor.