**February 2**

**James Walsh**,
Cornell University

**Reducing omega-model reflection to iterated syntactic reflection**

Two types of principles are commonly called “reflection principles” in reverse mathematics. According to syntactic reflection principles for T, every theorem of T (from some complexity class) is true. According to semantic reflection principles, every set belongs to some (sufficiently correct) model of T. We will present a connection between syntactic reflection and semantic reflection in second-order arithmetic: for any Pi^1_2 axiomatized theory T, every set is contained in an omega model of T if and only if every iteration of Pi^1_1 reflection for T along a well-ordering is Pi^1_1 sound. There is a thorough proof-theoretic understanding of the latter in terms of ordinal analysis. Accordingly, these reductions yield proof-theoretic analyses of omega-model reflection principles. This is joint work with Fedor Pakhomov.