**November 22**

**Joel David Hamkins**,
University of Notre Dame

**Pointwise definable and Leibnizian extensions of models of arithmetic and set theory**

I shall introduce a flexible new method showing that every countable model of PA admits a pointwise definable end-extension, one in which every individual is definable without parameters. And similarly for models of set theory, in which one may also achieve the Barwise extension resultâ€”every countable model of ZF admits a pointwise definable end-extension to a model of ZFC+V=L, or indeed any theory arising in a suitable inner model. A generalization of the method shows that every model of arithmetic of size at most continuum admits a Leibnizian extension, and similarly in set theory.

â€‹