**July 1**

Zachiri McKenzie,

**Initial self-embeddings of models of set theory: Part II**

In the 1973 paper 'Countable models of set theory', H. Friedman's investigation of embeddings between countable models of subsystems of ZF yields the following two striking results:

1. Every countable nonstandard model of PA is isomorphic to a proper initial segment of itself.

2. Every countable nonstandard model of a sufficiently strong subsystem of ZF is isomorphic to a proper initial segment that is a union of ranks of the original model.

Note that, in contrast to PA, in the context of set theory there are three alternative notions of 'initial segment': transitive subclass, transitive subclass that is closed under subsets and rank-initial segment. Paul Gorbow, in his Ph.D. thesis, systematically studies versions of H. Friedman's self-embedding that yield isomorphisms between a countable nonstandard model of set theory and a rank-initial segment of itself. In these two talks I will discuss recent joint work with Ali Enayat that investigates models of set theory that are isomorphic to a transitive subclass of itself. We call the maps witnessing these isomorphisms 'initial self-embeddings'. I will outline a proof of a refinement of H. Friedman's Theorem that guarantees the existence of initial self-embeddings for certain subsystems of ZF without the powerset axiom. I will then discuss several examples including a nonstandard model of ZFC minus the powerset axiom that admits no initial self-embedding, and models that separate the three different notions of self-embedding for models of set theory. Finally, I will discuss two interesting applications of our version of H. Freidman's Theorem. The first of these is a refinement of a result due to Quinsey that guarantees the existence of partially elementary proper transitive subclasses of non-standard models of ZF minus the powerset axiom. The second result shows that every countable model of ZF with a nonstandard natural number is isomorphic to a transitive subclass of the hereditarily countable sets of its own constructible universe.